Properties

Label 2-65-1.1-c5-0-10
Degree $2$
Conductor $65$
Sign $1$
Analytic cond. $10.4249$
Root an. cond. $3.22876$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.15·2-s + 29.2·3-s − 14.7·4-s + 25·5-s + 121.·6-s + 42.5·7-s − 194.·8-s + 611.·9-s + 103.·10-s + 434.·11-s − 431.·12-s − 169·13-s + 176.·14-s + 730.·15-s − 334.·16-s − 424.·17-s + 2.53e3·18-s − 2.20e3·19-s − 368.·20-s + 1.24e3·21-s + 1.80e3·22-s − 1.17e3·23-s − 5.67e3·24-s + 625·25-s − 701.·26-s + 1.07e4·27-s − 627.·28-s + ⋯
L(s)  = 1  + 0.734·2-s + 1.87·3-s − 0.460·4-s + 0.447·5-s + 1.37·6-s + 0.327·7-s − 1.07·8-s + 2.51·9-s + 0.328·10-s + 1.08·11-s − 0.864·12-s − 0.277·13-s + 0.240·14-s + 0.838·15-s − 0.326·16-s − 0.356·17-s + 1.84·18-s − 1.40·19-s − 0.206·20-s + 0.614·21-s + 0.794·22-s − 0.463·23-s − 2.01·24-s + 0.200·25-s − 0.203·26-s + 2.84·27-s − 0.151·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65\)    =    \(5 \cdot 13\)
Sign: $1$
Analytic conductor: \(10.4249\)
Root analytic conductor: \(3.22876\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 65,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.135324521\)
\(L(\frac12)\) \(\approx\) \(4.135324521\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
13 \( 1 + 169T \)
good2 \( 1 - 4.15T + 32T^{2} \)
3 \( 1 - 29.2T + 243T^{2} \)
7 \( 1 - 42.5T + 1.68e4T^{2} \)
11 \( 1 - 434.T + 1.61e5T^{2} \)
17 \( 1 + 424.T + 1.41e6T^{2} \)
19 \( 1 + 2.20e3T + 2.47e6T^{2} \)
23 \( 1 + 1.17e3T + 6.43e6T^{2} \)
29 \( 1 + 3.07e3T + 2.05e7T^{2} \)
31 \( 1 - 6.24e3T + 2.86e7T^{2} \)
37 \( 1 + 1.01e4T + 6.93e7T^{2} \)
41 \( 1 + 7.02e3T + 1.15e8T^{2} \)
43 \( 1 + 2.15e4T + 1.47e8T^{2} \)
47 \( 1 - 3.08e3T + 2.29e8T^{2} \)
53 \( 1 - 3.81e4T + 4.18e8T^{2} \)
59 \( 1 + 1.75e4T + 7.14e8T^{2} \)
61 \( 1 + 1.28e4T + 8.44e8T^{2} \)
67 \( 1 + 4.64e4T + 1.35e9T^{2} \)
71 \( 1 - 5.58e4T + 1.80e9T^{2} \)
73 \( 1 - 4.95e4T + 2.07e9T^{2} \)
79 \( 1 - 8.61e3T + 3.07e9T^{2} \)
83 \( 1 + 1.63e3T + 3.93e9T^{2} \)
89 \( 1 - 2.65e4T + 5.58e9T^{2} \)
97 \( 1 - 1.81e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.89450496212874654968972125559, −13.29462829749581063809751958005, −12.16606705923920002004296057714, −10.06549512252618447844242123930, −9.030341132353807470199419549886, −8.335415990075900695551635195073, −6.63052217674944975833931317805, −4.57768005018023951016534301971, −3.51372216342502787829085168784, −1.98381328955235191340079263652, 1.98381328955235191340079263652, 3.51372216342502787829085168784, 4.57768005018023951016534301971, 6.63052217674944975833931317805, 8.335415990075900695551635195073, 9.030341132353807470199419549886, 10.06549512252618447844242123930, 12.16606705923920002004296057714, 13.29462829749581063809751958005, 13.89450496212874654968972125559

Graph of the $Z$-function along the critical line