L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.36 + 2.36i)3-s + (−0.499 + 0.866i)4-s + (1.36 − 2.36i)6-s + (−2.23 + 3.86i)7-s + 0.999·8-s + (−2.23 + 3.86i)9-s + (−0.866 − 1.5i)11-s − 2.73·12-s + (−3.59 + 0.232i)13-s + 4.46·14-s + (−0.5 − 0.866i)16-s + (2.36 − 4.09i)17-s + 4.46·18-s + (−3.59 + 6.23i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.788 + 1.36i)3-s + (−0.249 + 0.433i)4-s + (0.557 − 0.965i)6-s + (−0.843 + 1.46i)7-s + 0.353·8-s + (−0.744 + 1.28i)9-s + (−0.261 − 0.452i)11-s − 0.788·12-s + (−0.997 + 0.0643i)13-s + 1.19·14-s + (−0.125 − 0.216i)16-s + (0.573 − 0.993i)17-s + 1.05·18-s + (−0.825 + 1.42i)19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.755−0.655i)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)(−0.755−0.655i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.755−0.655i
|
Analytic conductor: |
5.19027 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :1/2), −0.755−0.655i)
|
Particular Values
L(1) |
≈ |
0.343431+0.919954i |
L(21) |
≈ |
0.343431+0.919954i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 5 | 1 |
| 13 | 1+(3.59−0.232i)T |
good | 3 | 1+(−1.36−2.36i)T+(−1.5+2.59i)T2 |
| 7 | 1+(2.23−3.86i)T+(−3.5−6.06i)T2 |
| 11 | 1+(0.866+1.5i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.36+4.09i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.59−6.23i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.73+3i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.26+2.19i)T+(−14.5+25.1i)T2 |
| 31 | 1−6.73T+31T2 |
| 37 | 1+(−0.598−1.03i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−3.46−6i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.46−4.26i)T+(−21.5−37.2i)T2 |
| 47 | 1+0.464T+47T2 |
| 53 | 1+1.73T+53T2 |
| 59 | 1+(4.73−8.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.63−2.83i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.19−10.7i)T+(−33.5+58.0i)T2 |
| 71 | 1+(4.26−7.39i)T+(−35.5−61.4i)T2 |
| 73 | 1+0.732T+73T2 |
| 79 | 1−6.73T+79T2 |
| 83 | 1−5.66T+83T2 |
| 89 | 1+(−4.5−7.79i)T+(−44.5+77.0i)T2 |
| 97 | 1+(4.36−7.56i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.49144266222012004097235970136, −9.831856307409032872645184183068, −9.440601548266922267162195209131, −8.564060722365837359251142996049, −7.927577955596429008542905619123, −6.24259725220808924826055967879, −5.18643170429196532853531298602, −4.15119722399539605534293757818, −2.97752656888277948434916468307, −2.51531783145462083831709665469,
0.51507192133846132755210390980, 2.01187548205777055911372734968, 3.36452384216245960067513866771, 4.66978377580300877156563387280, 6.24572548106155353088545205998, 6.94836918691122683851685924598, 7.47772488668740152810380700386, 8.137126720931856407990207247855, 9.215353587645191176838525156343, 10.03283118698848312989550640382