L(s) = 1 | + (−0.866 + 0.5i)2-s + (−1.99 + 1.15i)3-s + (0.499 − 0.866i)4-s + (1.15 − 1.99i)6-s + (0.603 + 0.348i)7-s + 0.999i·8-s + (1.15 − 1.99i)9-s + (0.348 + 0.603i)11-s + 2.30i·12-s + (−3.12 + 1.80i)13-s − 0.697·14-s + (−0.5 − 0.866i)16-s + (2.51 + 1.45i)17-s + 2.30i·18-s + (−0.197 + 0.341i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−1.15 + 0.664i)3-s + (0.249 − 0.433i)4-s + (0.470 − 0.814i)6-s + (0.228 + 0.131i)7-s + 0.353i·8-s + (0.383 − 0.664i)9-s + (0.105 + 0.182i)11-s + 0.664i·12-s + (−0.866 + 0.499i)13-s − 0.186·14-s + (−0.125 − 0.216i)16-s + (0.610 + 0.352i)17-s + 0.542i·18-s + (−0.0452 + 0.0783i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.658 + 0.752i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.658 + 0.752i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0465425 - 0.102596i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0465425 - 0.102596i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.12 - 1.80i)T \) |
good | 3 | \( 1 + (1.99 - 1.15i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.603 - 0.348i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.348 - 0.603i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.51 - 1.45i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.197 - 0.341i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.85 - 2.80i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.65 - 2.86i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 8.60T + 31T^{2} \) |
| 37 | \( 1 + (-3.20 + 1.84i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (7.37 + 4.25i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 10.3iT - 47T^{2} \) |
| 53 | \( 1 + 12.2iT - 53T^{2} \) |
| 59 | \( 1 + (5.10 - 8.84i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.10 - 3.64i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.85 - 2.80i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.30 + 9.18i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 8iT - 73T^{2} \) |
| 79 | \( 1 + 9.30T + 79T^{2} \) |
| 83 | \( 1 - 16.8iT - 83T^{2} \) |
| 89 | \( 1 + (-0.0458 - 0.0793i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.1 + 5.84i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94846529698751260310507926371, −10.15395366253292508290144938254, −9.628069624788541997730972762162, −8.559032210168798517841525244070, −7.53296396892150474325904328277, −6.63571245788178473617157325143, −5.60124771807485113457977400203, −5.03394124440056408489309937750, −3.82551392903124168356635352041, −1.89695133153836001977767962087,
0.087509765701600440654719947573, 1.45082208913571055841775943188, 2.93159717839683273713726441280, 4.51031613078481387862183314941, 5.62945784372776124684314319931, 6.44676966278357932119792870065, 7.45431086020353706924004101354, 8.037915678333098284255392065102, 9.323864449564156019801611873778, 10.12116357395872535396397676885