L(s) = 1 | + (−0.866 + 0.5i)2-s + (−1.99 + 1.15i)3-s + (0.499 − 0.866i)4-s + (1.15 − 1.99i)6-s + (0.603 + 0.348i)7-s + 0.999i·8-s + (1.15 − 1.99i)9-s + (0.348 + 0.603i)11-s + 2.30i·12-s + (−3.12 + 1.80i)13-s − 0.697·14-s + (−0.5 − 0.866i)16-s + (2.51 + 1.45i)17-s + 2.30i·18-s + (−0.197 + 0.341i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−1.15 + 0.664i)3-s + (0.249 − 0.433i)4-s + (0.470 − 0.814i)6-s + (0.228 + 0.131i)7-s + 0.353i·8-s + (0.383 − 0.664i)9-s + (0.105 + 0.182i)11-s + 0.664i·12-s + (−0.866 + 0.499i)13-s − 0.186·14-s + (−0.125 − 0.216i)16-s + (0.610 + 0.352i)17-s + 0.542i·18-s + (−0.0452 + 0.0783i)19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.658+0.752i)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)(−0.658+0.752i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.658+0.752i
|
Analytic conductor: |
5.19027 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :1/2), −0.658+0.752i)
|
Particular Values
L(1) |
≈ |
0.0465425−0.102596i |
L(21) |
≈ |
0.0465425−0.102596i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 5 | 1 |
| 13 | 1+(3.12−1.80i)T |
good | 3 | 1+(1.99−1.15i)T+(1.5−2.59i)T2 |
| 7 | 1+(−0.603−0.348i)T+(3.5+6.06i)T2 |
| 11 | 1+(−0.348−0.603i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2.51−1.45i)T+(8.5+14.7i)T2 |
| 19 | 1+(0.197−0.341i)T+(−9.5−16.4i)T2 |
| 23 | 1+(4.85−2.80i)T+(11.5−19.9i)T2 |
| 29 | 1+(−1.65−2.86i)T+(−14.5+25.1i)T2 |
| 31 | 1+8.60T+31T2 |
| 37 | 1+(−3.20+1.84i)T+(18.5−32.0i)T2 |
| 41 | 1+(0.5+0.866i)T+(−20.5+35.5i)T2 |
| 43 | 1+(7.37+4.25i)T+(21.5+37.2i)T2 |
| 47 | 1+10.3iT−47T2 |
| 53 | 1+12.2iT−53T2 |
| 59 | 1+(5.10−8.84i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.10−3.64i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.85−2.80i)T+(33.5−58.0i)T2 |
| 71 | 1+(−5.30+9.18i)T+(−35.5−61.4i)T2 |
| 73 | 1+8iT−73T2 |
| 79 | 1+9.30T+79T2 |
| 83 | 1−16.8iT−83T2 |
| 89 | 1+(−0.0458−0.0793i)T+(−44.5+77.0i)T2 |
| 97 | 1+(10.1+5.84i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94846529698751260310507926371, −10.15395366253292508290144938254, −9.628069624788541997730972762162, −8.559032210168798517841525244070, −7.53296396892150474325904328277, −6.63571245788178473617157325143, −5.60124771807485113457977400203, −5.03394124440056408489309937750, −3.82551392903124168356635352041, −1.89695133153836001977767962087,
0.087509765701600440654719947573, 1.45082208913571055841775943188, 2.93159717839683273713726441280, 4.51031613078481387862183314941, 5.62945784372776124684314319931, 6.44676966278357932119792870065, 7.45431086020353706924004101354, 8.037915678333098284255392065102, 9.323864449564156019801611873778, 10.12116357395872535396397676885