L(s) = 1 | + (0.866 − 0.5i)2-s + (1.71 + 0.460i)3-s + (0.499 − 0.866i)4-s + (1.71 − 0.460i)6-s + (0.386 − 0.670i)7-s − 0.999i·8-s + (0.142 + 0.0825i)9-s + (2.36 + 0.634i)11-s + (1.25 − 1.25i)12-s + (3.22 + 1.61i)13-s − 0.773i·14-s + (−0.5 − 0.866i)16-s + (−0.325 − 1.21i)17-s + 0.165·18-s + (−0.0463 − 0.173i)19-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.992 + 0.265i)3-s + (0.249 − 0.433i)4-s + (0.701 − 0.187i)6-s + (0.146 − 0.253i)7-s − 0.353i·8-s + (0.0476 + 0.0275i)9-s + (0.713 + 0.191i)11-s + (0.363 − 0.363i)12-s + (0.894 + 0.447i)13-s − 0.206i·14-s + (−0.125 − 0.216i)16-s + (−0.0790 − 0.295i)17-s + 0.0389·18-s + (−0.0106 − 0.0397i)19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(0.879+0.476i)Λ(2−s)
Λ(s)=(=(650s/2ΓC(s+1/2)L(s)(0.879+0.476i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
0.879+0.476i
|
Analytic conductor: |
5.19027 |
Root analytic conductor: |
2.27821 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(557,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :1/2), 0.879+0.476i)
|
Particular Values
L(1) |
≈ |
2.86938−0.726925i |
L(21) |
≈ |
2.86938−0.726925i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 5 | 1 |
| 13 | 1+(−3.22−1.61i)T |
good | 3 | 1+(−1.71−0.460i)T+(2.59+1.5i)T2 |
| 7 | 1+(−0.386+0.670i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−2.36−0.634i)T+(9.52+5.5i)T2 |
| 17 | 1+(0.325+1.21i)T+(−14.7+8.5i)T2 |
| 19 | 1+(0.0463+0.173i)T+(−16.4+9.5i)T2 |
| 23 | 1+(0.0925−0.345i)T+(−19.9−11.5i)T2 |
| 29 | 1+(−0.581+0.335i)T+(14.5−25.1i)T2 |
| 31 | 1+(−2.01−2.01i)T+31iT2 |
| 37 | 1+(4.27+7.41i)T+(−18.5+32.0i)T2 |
| 41 | 1+(2.60−9.72i)T+(−35.5−20.5i)T2 |
| 43 | 1+(0.194−0.0521i)T+(37.2−21.5i)T2 |
| 47 | 1+9.78T+47T2 |
| 53 | 1+(0.918−0.918i)T−53iT2 |
| 59 | 1+(0.742−0.199i)T+(51.0−29.5i)T2 |
| 61 | 1+(7.31−12.6i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.894−0.516i)T+(33.5−58.0i)T2 |
| 71 | 1+(−4.58+1.22i)T+(61.4−35.5i)T2 |
| 73 | 1+12.2iT−73T2 |
| 79 | 1−8.67iT−79T2 |
| 83 | 1+8.94T+83T2 |
| 89 | 1+(−3.34+12.4i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−9.71−5.61i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52846219679753308948854456688, −9.511280760867449173271735377078, −8.916820891397890833896947883639, −7.988444238908903579113633954432, −6.84560690915142961656309224605, −5.94859995507167822420834938421, −4.59931396675276255858086460395, −3.79014049796353800731780902379, −2.90513798971131687046548768345, −1.55624168399136523899918468595,
1.78475156340784982884983459013, 3.08386555756357171051891180973, 3.85061568400383638643661865273, 5.17094185479308876809962999633, 6.16946089007509571197024387040, 7.04464399032874684142961303169, 8.262356008165738958254477963675, 8.462807567753357011826912594857, 9.529224173297660082533370907458, 10.74213680015641298829070863036