L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.01 + 0.272i)3-s + (−0.499 + 0.866i)4-s + (−0.272 − 1.01i)6-s + (−0.524 − 0.303i)7-s + 0.999·8-s + (−1.63 − 0.944i)9-s + (1.67 − 6.24i)11-s + (−0.745 + 0.745i)12-s + (−3.55 + 0.572i)13-s + 0.606i·14-s + (−0.5 − 0.866i)16-s + (0.267 + 0.996i)17-s + 1.88i·18-s + (0.896 − 0.240i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.587 + 0.157i)3-s + (−0.249 + 0.433i)4-s + (−0.111 − 0.415i)6-s + (−0.198 − 0.114i)7-s + 0.353·8-s + (−0.545 − 0.314i)9-s + (0.504 − 1.88i)11-s + (−0.215 + 0.215i)12-s + (−0.987 + 0.158i)13-s + 0.162i·14-s + (−0.125 − 0.216i)16-s + (0.0647 + 0.241i)17-s + 0.445i·18-s + (0.205 − 0.0551i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.601390 - 0.969816i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.601390 - 0.969816i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.55 - 0.572i)T \) |
good | 3 | \( 1 + (-1.01 - 0.272i)T + (2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (0.524 + 0.303i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.67 + 6.24i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-0.267 - 0.996i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.896 + 0.240i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.31 + 4.90i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.65 + 1.53i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-7.06 + 7.06i)T - 31iT^{2} \) |
| 37 | \( 1 + (0.0372 - 0.0214i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.75 - 0.471i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (6.78 - 1.81i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 7.31iT - 47T^{2} \) |
| 53 | \( 1 + (-3.80 + 3.80i)T - 53iT^{2} \) |
| 59 | \( 1 + (1.52 + 5.68i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (1.28 - 2.21i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.28 - 5.69i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.71 - 10.1i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + 2.04T + 73T^{2} \) |
| 79 | \( 1 - 4.09iT - 79T^{2} \) |
| 83 | \( 1 - 7.40iT - 83T^{2} \) |
| 89 | \( 1 + (14.6 + 3.91i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-8.80 + 15.2i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10195285144228253817554288348, −9.469883299697114706470980542809, −8.489100783591493068966845483811, −8.173987813272685575016436685092, −6.72564488623917513992764687741, −5.79691521323199526242315529519, −4.36606396526152303415887995322, −3.30017404241711820895254420507, −2.56686346745853954549385517983, −0.64369963136564601401032463651,
1.79197391499946903380810751165, 3.02168733563119695824954787989, 4.58351005991489998382710647017, 5.34137437610281156195506823443, 6.72592440924782611889788076068, 7.33384851771457640626475314297, 8.118434728683662550751089589540, 9.136539593115415823964082092136, 9.707905245438556284702031378220, 10.49245338457614352545588482899