Properties

Label 2-650-65.2-c1-0-15
Degree 22
Conductor 650650
Sign 0.444+0.895i-0.444 + 0.895i
Analytic cond. 5.190275.19027
Root an. cond. 2.278212.27821
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (1.01 + 0.272i)3-s + (−0.499 + 0.866i)4-s + (−0.272 − 1.01i)6-s + (−0.524 − 0.303i)7-s + 0.999·8-s + (−1.63 − 0.944i)9-s + (1.67 − 6.24i)11-s + (−0.745 + 0.745i)12-s + (−3.55 + 0.572i)13-s + 0.606i·14-s + (−0.5 − 0.866i)16-s + (0.267 + 0.996i)17-s + 1.88i·18-s + (0.896 − 0.240i)19-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (0.587 + 0.157i)3-s + (−0.249 + 0.433i)4-s + (−0.111 − 0.415i)6-s + (−0.198 − 0.114i)7-s + 0.353·8-s + (−0.545 − 0.314i)9-s + (0.504 − 1.88i)11-s + (−0.215 + 0.215i)12-s + (−0.987 + 0.158i)13-s + 0.162i·14-s + (−0.125 − 0.216i)16-s + (0.0647 + 0.241i)17-s + 0.445i·18-s + (0.205 − 0.0551i)19-s + ⋯

Functional equation

Λ(s)=(650s/2ΓC(s)L(s)=((0.444+0.895i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(650s/2ΓC(s+1/2)L(s)=((0.444+0.895i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 650650    =    252132 \cdot 5^{2} \cdot 13
Sign: 0.444+0.895i-0.444 + 0.895i
Analytic conductor: 5.190275.19027
Root analytic conductor: 2.278212.27821
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ650(457,)\chi_{650} (457, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 650, ( :1/2), 0.444+0.895i)(2,\ 650,\ (\ :1/2),\ -0.444 + 0.895i)

Particular Values

L(1)L(1) \approx 0.6013900.969816i0.601390 - 0.969816i
L(12)L(\frac12) \approx 0.6013900.969816i0.601390 - 0.969816i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
5 1 1
13 1+(3.550.572i)T 1 + (3.55 - 0.572i)T
good3 1+(1.010.272i)T+(2.59+1.5i)T2 1 + (-1.01 - 0.272i)T + (2.59 + 1.5i)T^{2}
7 1+(0.524+0.303i)T+(3.5+6.06i)T2 1 + (0.524 + 0.303i)T + (3.5 + 6.06i)T^{2}
11 1+(1.67+6.24i)T+(9.525.5i)T2 1 + (-1.67 + 6.24i)T + (-9.52 - 5.5i)T^{2}
17 1+(0.2670.996i)T+(14.7+8.5i)T2 1 + (-0.267 - 0.996i)T + (-14.7 + 8.5i)T^{2}
19 1+(0.896+0.240i)T+(16.49.5i)T2 1 + (-0.896 + 0.240i)T + (16.4 - 9.5i)T^{2}
23 1+(1.31+4.90i)T+(19.911.5i)T2 1 + (-1.31 + 4.90i)T + (-19.9 - 11.5i)T^{2}
29 1+(2.65+1.53i)T+(14.525.1i)T2 1 + (-2.65 + 1.53i)T + (14.5 - 25.1i)T^{2}
31 1+(7.06+7.06i)T31iT2 1 + (-7.06 + 7.06i)T - 31iT^{2}
37 1+(0.03720.0214i)T+(18.532.0i)T2 1 + (0.0372 - 0.0214i)T + (18.5 - 32.0i)T^{2}
41 1+(1.750.471i)T+(35.5+20.5i)T2 1 + (-1.75 - 0.471i)T + (35.5 + 20.5i)T^{2}
43 1+(6.781.81i)T+(37.221.5i)T2 1 + (6.78 - 1.81i)T + (37.2 - 21.5i)T^{2}
47 17.31iT47T2 1 - 7.31iT - 47T^{2}
53 1+(3.80+3.80i)T53iT2 1 + (-3.80 + 3.80i)T - 53iT^{2}
59 1+(1.52+5.68i)T+(51.0+29.5i)T2 1 + (1.52 + 5.68i)T + (-51.0 + 29.5i)T^{2}
61 1+(1.282.21i)T+(30.552.8i)T2 1 + (1.28 - 2.21i)T + (-30.5 - 52.8i)T^{2}
67 1+(3.285.69i)T+(33.5+58.0i)T2 1 + (-3.28 - 5.69i)T + (-33.5 + 58.0i)T^{2}
71 1+(2.7110.1i)T+(61.4+35.5i)T2 1 + (-2.71 - 10.1i)T + (-61.4 + 35.5i)T^{2}
73 1+2.04T+73T2 1 + 2.04T + 73T^{2}
79 14.09iT79T2 1 - 4.09iT - 79T^{2}
83 17.40iT83T2 1 - 7.40iT - 83T^{2}
89 1+(14.6+3.91i)T+(77.0+44.5i)T2 1 + (14.6 + 3.91i)T + (77.0 + 44.5i)T^{2}
97 1+(8.80+15.2i)T+(48.584.0i)T2 1 + (-8.80 + 15.2i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.10195285144228253817554288348, −9.469883299697114706470980542809, −8.489100783591493068966845483811, −8.173987813272685575016436685092, −6.72564488623917513992764687741, −5.79691521323199526242315529519, −4.36606396526152303415887995322, −3.30017404241711820895254420507, −2.56686346745853954549385517983, −0.64369963136564601401032463651, 1.79197391499946903380810751165, 3.02168733563119695824954787989, 4.58351005991489998382710647017, 5.34137437610281156195506823443, 6.72592440924782611889788076068, 7.33384851771457640626475314297, 8.118434728683662550751089589540, 9.136539593115415823964082092136, 9.707905245438556284702031378220, 10.49245338457614352545588482899

Graph of the ZZ-function along the critical line