Properties

Label 2-650-5.4-c5-0-8
Degree $2$
Conductor $650$
Sign $-0.447 + 0.894i$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·2-s + 19.2i·3-s − 16·4-s − 76.8·6-s − 51.1i·7-s − 64i·8-s − 126.·9-s + 494.·11-s − 307. i·12-s + 169i·13-s + 204.·14-s + 256·16-s − 2.36e3i·17-s − 506. i·18-s + 699.·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 1.23i·3-s − 0.5·4-s − 0.872·6-s − 0.394i·7-s − 0.353i·8-s − 0.520·9-s + 1.23·11-s − 0.616i·12-s + 0.277i·13-s + 0.279·14-s + 0.250·16-s − 1.98i·17-s − 0.368i·18-s + 0.444·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{650} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8228182837\)
\(L(\frac12)\) \(\approx\) \(0.8228182837\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4iT \)
5 \( 1 \)
13 \( 1 - 169iT \)
good3 \( 1 - 19.2iT - 243T^{2} \)
7 \( 1 + 51.1iT - 1.68e4T^{2} \)
11 \( 1 - 494.T + 1.61e5T^{2} \)
17 \( 1 + 2.36e3iT - 1.41e6T^{2} \)
19 \( 1 - 699.T + 2.47e6T^{2} \)
23 \( 1 - 3.80e3iT - 6.43e6T^{2} \)
29 \( 1 + 2.26e3T + 2.05e7T^{2} \)
31 \( 1 + 9.08e3T + 2.86e7T^{2} \)
37 \( 1 + 4.48e3iT - 6.93e7T^{2} \)
41 \( 1 + 1.24e4T + 1.15e8T^{2} \)
43 \( 1 - 1.25e4iT - 1.47e8T^{2} \)
47 \( 1 - 3.60e3iT - 2.29e8T^{2} \)
53 \( 1 + 7.54e3iT - 4.18e8T^{2} \)
59 \( 1 + 5.00e4T + 7.14e8T^{2} \)
61 \( 1 + 2.47e4T + 8.44e8T^{2} \)
67 \( 1 - 4.37e4iT - 1.35e9T^{2} \)
71 \( 1 - 7.60e3T + 1.80e9T^{2} \)
73 \( 1 - 2.16e4iT - 2.07e9T^{2} \)
79 \( 1 + 1.03e5T + 3.07e9T^{2} \)
83 \( 1 - 8.03e4iT - 3.93e9T^{2} \)
89 \( 1 + 5.93e4T + 5.58e9T^{2} \)
97 \( 1 + 7.34e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03594608384013982426297663478, −9.281568845852005915115115507881, −9.100477367289480306613518358409, −7.49701310697984778208323927726, −7.01463455501888753939298579420, −5.69599434135675158464679069133, −4.91076561495714424923936568113, −4.02481829338212262406214068930, −3.27596891446237640375953424171, −1.33035435032325176047832885419, 0.17792521344228198541589631241, 1.45490348744143616148447274799, 1.93858970345071507794288773128, 3.32659167346692373838370124474, 4.31966823979743706088062782619, 5.77644640849140991196864230450, 6.47624647882894459242544956580, 7.45490496960687785093462692422, 8.456175823487053119890965243047, 9.028335535635023629845334942652

Graph of the $Z$-function along the critical line