L(s) = 1 | + 4i·2-s + 19.2i·3-s − 16·4-s − 76.8·6-s − 51.1i·7-s − 64i·8-s − 126.·9-s + 494.·11-s − 307. i·12-s + 169i·13-s + 204.·14-s + 256·16-s − 2.36e3i·17-s − 506. i·18-s + 699.·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.23i·3-s − 0.5·4-s − 0.872·6-s − 0.394i·7-s − 0.353i·8-s − 0.520·9-s + 1.23·11-s − 0.616i·12-s + 0.277i·13-s + 0.279·14-s + 0.250·16-s − 1.98i·17-s − 0.368i·18-s + 0.444·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
0.8228182837 |
L(21) |
≈ |
0.8228182837 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1 |
| 13 | 1−169iT |
good | 3 | 1−19.2iT−243T2 |
| 7 | 1+51.1iT−1.68e4T2 |
| 11 | 1−494.T+1.61e5T2 |
| 17 | 1+2.36e3iT−1.41e6T2 |
| 19 | 1−699.T+2.47e6T2 |
| 23 | 1−3.80e3iT−6.43e6T2 |
| 29 | 1+2.26e3T+2.05e7T2 |
| 31 | 1+9.08e3T+2.86e7T2 |
| 37 | 1+4.48e3iT−6.93e7T2 |
| 41 | 1+1.24e4T+1.15e8T2 |
| 43 | 1−1.25e4iT−1.47e8T2 |
| 47 | 1−3.60e3iT−2.29e8T2 |
| 53 | 1+7.54e3iT−4.18e8T2 |
| 59 | 1+5.00e4T+7.14e8T2 |
| 61 | 1+2.47e4T+8.44e8T2 |
| 67 | 1−4.37e4iT−1.35e9T2 |
| 71 | 1−7.60e3T+1.80e9T2 |
| 73 | 1−2.16e4iT−2.07e9T2 |
| 79 | 1+1.03e5T+3.07e9T2 |
| 83 | 1−8.03e4iT−3.93e9T2 |
| 89 | 1+5.93e4T+5.58e9T2 |
| 97 | 1+7.34e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03594608384013982426297663478, −9.281568845852005915115115507881, −9.100477367289480306613518358409, −7.49701310697984778208323927726, −7.01463455501888753939298579420, −5.69599434135675158464679069133, −4.91076561495714424923936568113, −4.02481829338212262406214068930, −3.27596891446237640375953424171, −1.33035435032325176047832885419,
0.17792521344228198541589631241, 1.45490348744143616148447274799, 1.93858970345071507794288773128, 3.32659167346692373838370124474, 4.31966823979743706088062782619, 5.77644640849140991196864230450, 6.47624647882894459242544956580, 7.45490496960687785093462692422, 8.456175823487053119890965243047, 9.028335535635023629845334942652