Properties

Label 2-650-5.4-c5-0-17
Degree $2$
Conductor $650$
Sign $0.447 - 0.894i$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·2-s − 13.8i·3-s − 16·4-s − 55.2·6-s + 213. i·7-s + 64i·8-s + 52.2·9-s + 587.·11-s + 220. i·12-s + 169i·13-s + 852.·14-s + 256·16-s + 162. i·17-s − 208. i·18-s + 81.3·19-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.886i·3-s − 0.5·4-s − 0.626·6-s + 1.64i·7-s + 0.353i·8-s + 0.215·9-s + 1.46·11-s + 0.443i·12-s + 0.277i·13-s + 1.16·14-s + 0.250·16-s + 0.136i·17-s − 0.152i·18-s + 0.0517·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{650} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.270069001\)
\(L(\frac12)\) \(\approx\) \(1.270069001\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4iT \)
5 \( 1 \)
13 \( 1 - 169iT \)
good3 \( 1 + 13.8iT - 243T^{2} \)
7 \( 1 - 213. iT - 1.68e4T^{2} \)
11 \( 1 - 587.T + 1.61e5T^{2} \)
17 \( 1 - 162. iT - 1.41e6T^{2} \)
19 \( 1 - 81.3T + 2.47e6T^{2} \)
23 \( 1 - 2.94e3iT - 6.43e6T^{2} \)
29 \( 1 + 6.25e3T + 2.05e7T^{2} \)
31 \( 1 + 4.03e3T + 2.86e7T^{2} \)
37 \( 1 - 7.61e3iT - 6.93e7T^{2} \)
41 \( 1 - 958.T + 1.15e8T^{2} \)
43 \( 1 + 169. iT - 1.47e8T^{2} \)
47 \( 1 - 2.16e4iT - 2.29e8T^{2} \)
53 \( 1 + 2.47e4iT - 4.18e8T^{2} \)
59 \( 1 + 4.01e4T + 7.14e8T^{2} \)
61 \( 1 + 1.63e4T + 8.44e8T^{2} \)
67 \( 1 - 1.83e4iT - 1.35e9T^{2} \)
71 \( 1 + 7.78e4T + 1.80e9T^{2} \)
73 \( 1 - 6.21e4iT - 2.07e9T^{2} \)
79 \( 1 - 6.05e4T + 3.07e9T^{2} \)
83 \( 1 - 2.65e3iT - 3.93e9T^{2} \)
89 \( 1 + 8.22e3T + 5.58e9T^{2} \)
97 \( 1 + 5.38e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.614499714368035077133828830585, −9.261680168323628678120553833585, −8.352541077279392892496237227050, −7.31032991877676392980267919770, −6.29560717895398549048010405453, −5.53423751981796829250013596871, −4.22913414634812011431053649666, −3.09566887412121521806125259749, −1.86574969004136478667268614338, −1.40786269689817442154076074892, 0.27401470461281120399157178104, 1.42617728506997653133270024657, 3.58962519728403182276347230552, 4.07270718919929608224409319568, 4.85068011196085016120713452229, 6.14316714076633762036357705322, 7.07020564204057022138702898781, 7.62404060215958156092268949219, 8.976310899044234277287898423790, 9.492523325373256196950066681003

Graph of the $Z$-function along the critical line