L(s) = 1 | − 4i·2-s − 13.8i·3-s − 16·4-s − 55.2·6-s + 213. i·7-s + 64i·8-s + 52.2·9-s + 587.·11-s + 220. i·12-s + 169i·13-s + 852.·14-s + 256·16-s + 162. i·17-s − 208. i·18-s + 81.3·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.886i·3-s − 0.5·4-s − 0.626·6-s + 1.64i·7-s + 0.353i·8-s + 0.215·9-s + 1.46·11-s + 0.443i·12-s + 0.277i·13-s + 1.16·14-s + 0.250·16-s + 0.136i·17-s − 0.152i·18-s + 0.0517·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(0.447−0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), 0.447−0.894i)
|
Particular Values
L(3) |
≈ |
1.270069001 |
L(21) |
≈ |
1.270069001 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 5 | 1 |
| 13 | 1−169iT |
good | 3 | 1+13.8iT−243T2 |
| 7 | 1−213.iT−1.68e4T2 |
| 11 | 1−587.T+1.61e5T2 |
| 17 | 1−162.iT−1.41e6T2 |
| 19 | 1−81.3T+2.47e6T2 |
| 23 | 1−2.94e3iT−6.43e6T2 |
| 29 | 1+6.25e3T+2.05e7T2 |
| 31 | 1+4.03e3T+2.86e7T2 |
| 37 | 1−7.61e3iT−6.93e7T2 |
| 41 | 1−958.T+1.15e8T2 |
| 43 | 1+169.iT−1.47e8T2 |
| 47 | 1−2.16e4iT−2.29e8T2 |
| 53 | 1+2.47e4iT−4.18e8T2 |
| 59 | 1+4.01e4T+7.14e8T2 |
| 61 | 1+1.63e4T+8.44e8T2 |
| 67 | 1−1.83e4iT−1.35e9T2 |
| 71 | 1+7.78e4T+1.80e9T2 |
| 73 | 1−6.21e4iT−2.07e9T2 |
| 79 | 1−6.05e4T+3.07e9T2 |
| 83 | 1−2.65e3iT−3.93e9T2 |
| 89 | 1+8.22e3T+5.58e9T2 |
| 97 | 1+5.38e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.614499714368035077133828830585, −9.261680168323628678120553833585, −8.352541077279392892496237227050, −7.31032991877676392980267919770, −6.29560717895398549048010405453, −5.53423751981796829250013596871, −4.22913414634812011431053649666, −3.09566887412121521806125259749, −1.86574969004136478667268614338, −1.40786269689817442154076074892,
0.27401470461281120399157178104, 1.42617728506997653133270024657, 3.58962519728403182276347230552, 4.07270718919929608224409319568, 4.85068011196085016120713452229, 6.14316714076633762036357705322, 7.07020564204057022138702898781, 7.62404060215958156092268949219, 8.976310899044234277287898423790, 9.492523325373256196950066681003