L(s) = 1 | + 4i·2-s − 17.8i·3-s − 16·4-s + 71.2·6-s − 86.7i·7-s − 64i·8-s − 74.2·9-s − 203.·11-s + 284. i·12-s − 169i·13-s + 347.·14-s + 256·16-s + 406. i·17-s − 296. i·18-s + 2.32e3·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.14i·3-s − 0.5·4-s + 0.807·6-s − 0.669i·7-s − 0.353i·8-s − 0.305·9-s − 0.506·11-s + 0.571i·12-s − 0.277i·13-s + 0.473·14-s + 0.250·16-s + 0.341i·17-s − 0.216i·18-s + 1.47·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(0.447+0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), 0.447+0.894i)
|
Particular Values
L(3) |
≈ |
2.058365645 |
L(21) |
≈ |
2.058365645 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 5 | 1 |
| 13 | 1+169iT |
good | 3 | 1+17.8iT−243T2 |
| 7 | 1+86.7iT−1.68e4T2 |
| 11 | 1+203.T+1.61e5T2 |
| 17 | 1−406.iT−1.41e6T2 |
| 19 | 1−2.32e3T+2.47e6T2 |
| 23 | 1−3.28e3iT−6.43e6T2 |
| 29 | 1−2.72e3T+2.05e7T2 |
| 31 | 1−4.91e3T+2.86e7T2 |
| 37 | 1+3.12e3iT−6.93e7T2 |
| 41 | 1−1.50e4T+1.15e8T2 |
| 43 | 1−2.79e3iT−1.47e8T2 |
| 47 | 1+1.66e4iT−2.29e8T2 |
| 53 | 1−1.72e4iT−4.18e8T2 |
| 59 | 1+2.76e3T+7.14e8T2 |
| 61 | 1+1.68e4T+8.44e8T2 |
| 67 | 1+1.90e4iT−1.35e9T2 |
| 71 | 1−8.32e3T+1.80e9T2 |
| 73 | 1−4.94e4iT−2.07e9T2 |
| 79 | 1+9.58e4T+3.07e9T2 |
| 83 | 1−3.41e4iT−3.93e9T2 |
| 89 | 1−2.66e4T+5.58e9T2 |
| 97 | 1+2.49e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.572500880889281055573222555283, −8.387278002960991688276223787151, −7.51649438819996965801222050315, −7.28393007395354808916350403611, −6.17959569343121226102340625097, −5.35558898321617319849330852748, −4.14769519482778580216509904244, −2.88868773040646325603838085657, −1.40542989983443627680945384795, −0.58610135300322567807997016850,
0.913920297468290821391087662090, 2.45903098333016851064125675268, 3.24908430692276574402439896256, 4.44575963804332836497249691995, 5.01655846567430697260349276203, 6.06913689864061043906874800797, 7.46953300437329196435540208044, 8.579212389603211898334613537366, 9.305572352320784961918797905132, 9.990687047186043743232888909532