Properties

Label 2-650-5.4-c5-0-59
Degree $2$
Conductor $650$
Sign $0.447 + 0.894i$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4i·2-s − 17.8i·3-s − 16·4-s + 71.2·6-s − 86.7i·7-s − 64i·8-s − 74.2·9-s − 203.·11-s + 284. i·12-s − 169i·13-s + 347.·14-s + 256·16-s + 406. i·17-s − 296. i·18-s + 2.32e3·19-s + ⋯
L(s)  = 1  + 0.707i·2-s − 1.14i·3-s − 0.5·4-s + 0.807·6-s − 0.669i·7-s − 0.353i·8-s − 0.305·9-s − 0.506·11-s + 0.571i·12-s − 0.277i·13-s + 0.473·14-s + 0.250·16-s + 0.341i·17-s − 0.216i·18-s + 1.47·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{650} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.058365645\)
\(L(\frac12)\) \(\approx\) \(2.058365645\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4iT \)
5 \( 1 \)
13 \( 1 + 169iT \)
good3 \( 1 + 17.8iT - 243T^{2} \)
7 \( 1 + 86.7iT - 1.68e4T^{2} \)
11 \( 1 + 203.T + 1.61e5T^{2} \)
17 \( 1 - 406. iT - 1.41e6T^{2} \)
19 \( 1 - 2.32e3T + 2.47e6T^{2} \)
23 \( 1 - 3.28e3iT - 6.43e6T^{2} \)
29 \( 1 - 2.72e3T + 2.05e7T^{2} \)
31 \( 1 - 4.91e3T + 2.86e7T^{2} \)
37 \( 1 + 3.12e3iT - 6.93e7T^{2} \)
41 \( 1 - 1.50e4T + 1.15e8T^{2} \)
43 \( 1 - 2.79e3iT - 1.47e8T^{2} \)
47 \( 1 + 1.66e4iT - 2.29e8T^{2} \)
53 \( 1 - 1.72e4iT - 4.18e8T^{2} \)
59 \( 1 + 2.76e3T + 7.14e8T^{2} \)
61 \( 1 + 1.68e4T + 8.44e8T^{2} \)
67 \( 1 + 1.90e4iT - 1.35e9T^{2} \)
71 \( 1 - 8.32e3T + 1.80e9T^{2} \)
73 \( 1 - 4.94e4iT - 2.07e9T^{2} \)
79 \( 1 + 9.58e4T + 3.07e9T^{2} \)
83 \( 1 - 3.41e4iT - 3.93e9T^{2} \)
89 \( 1 - 2.66e4T + 5.58e9T^{2} \)
97 \( 1 + 2.49e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.572500880889281055573222555283, −8.387278002960991688276223787151, −7.51649438819996965801222050315, −7.28393007395354808916350403611, −6.17959569343121226102340625097, −5.35558898321617319849330852748, −4.14769519482778580216509904244, −2.88868773040646325603838085657, −1.40542989983443627680945384795, −0.58610135300322567807997016850, 0.913920297468290821391087662090, 2.45903098333016851064125675268, 3.24908430692276574402439896256, 4.44575963804332836497249691995, 5.01655846567430697260349276203, 6.06913689864061043906874800797, 7.46953300437329196435540208044, 8.579212389603211898334613537366, 9.305572352320784961918797905132, 9.990687047186043743232888909532

Graph of the $Z$-function along the critical line