L(s) = 1 | + 2.51·2-s + 4.34·4-s − 0.173·7-s + 5.90·8-s − 5.08·11-s − 1.82·13-s − 0.436·14-s + 6.19·16-s − 4.24·17-s − 8.62·19-s − 12.8·22-s + 3.16·23-s − 4.60·26-s − 0.753·28-s − 29-s + 3.22·31-s + 3.78·32-s − 10.6·34-s − 1.97·37-s − 21.7·38-s + 9.96·41-s − 7.91·43-s − 22.0·44-s + 7.96·46-s − 8.66·47-s − 6.96·49-s − 7.93·52-s + ⋯ |
L(s) = 1 | + 1.78·2-s + 2.17·4-s − 0.0655·7-s + 2.08·8-s − 1.53·11-s − 0.506·13-s − 0.116·14-s + 1.54·16-s − 1.02·17-s − 1.97·19-s − 2.72·22-s + 0.659·23-s − 0.902·26-s − 0.142·28-s − 0.185·29-s + 0.578·31-s + 0.669·32-s − 1.83·34-s − 0.325·37-s − 3.52·38-s + 1.55·41-s − 1.20·43-s − 3.32·44-s + 1.17·46-s − 1.26·47-s − 0.995·49-s − 1.10·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - 2.51T + 2T^{2} \) |
| 7 | \( 1 + 0.173T + 7T^{2} \) |
| 11 | \( 1 + 5.08T + 11T^{2} \) |
| 13 | \( 1 + 1.82T + 13T^{2} \) |
| 17 | \( 1 + 4.24T + 17T^{2} \) |
| 19 | \( 1 + 8.62T + 19T^{2} \) |
| 23 | \( 1 - 3.16T + 23T^{2} \) |
| 31 | \( 1 - 3.22T + 31T^{2} \) |
| 37 | \( 1 + 1.97T + 37T^{2} \) |
| 41 | \( 1 - 9.96T + 41T^{2} \) |
| 43 | \( 1 + 7.91T + 43T^{2} \) |
| 47 | \( 1 + 8.66T + 47T^{2} \) |
| 53 | \( 1 - 5.40T + 53T^{2} \) |
| 59 | \( 1 + 7.66T + 59T^{2} \) |
| 61 | \( 1 - 2.76T + 61T^{2} \) |
| 67 | \( 1 + 8.13T + 67T^{2} \) |
| 71 | \( 1 - 6.25T + 71T^{2} \) |
| 73 | \( 1 - 6.74T + 73T^{2} \) |
| 79 | \( 1 - 4.54T + 79T^{2} \) |
| 83 | \( 1 + 11.6T + 83T^{2} \) |
| 89 | \( 1 - 16.4T + 89T^{2} \) |
| 97 | \( 1 + 2.74T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.41339506898557750349160969213, −6.59085543652626634744967595426, −6.22535381044083932231269078235, −5.26437096444356329019281386103, −4.77286672862971458909570129277, −4.23839635581484150926923707711, −3.24100264441418227902801185836, −2.51692561164157743966688090238, −1.97790186832997501768146842664, 0,
1.97790186832997501768146842664, 2.51692561164157743966688090238, 3.24100264441418227902801185836, 4.23839635581484150926923707711, 4.77286672862971458909570129277, 5.26437096444356329019281386103, 6.22535381044083932231269078235, 6.59085543652626634744967595426, 7.41339506898557750349160969213