Properties

Label 2-6525-1.1-c1-0-219
Degree $2$
Conductor $6525$
Sign $-1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51·2-s + 4.34·4-s − 0.173·7-s + 5.90·8-s − 5.08·11-s − 1.82·13-s − 0.436·14-s + 6.19·16-s − 4.24·17-s − 8.62·19-s − 12.8·22-s + 3.16·23-s − 4.60·26-s − 0.753·28-s − 29-s + 3.22·31-s + 3.78·32-s − 10.6·34-s − 1.97·37-s − 21.7·38-s + 9.96·41-s − 7.91·43-s − 22.0·44-s + 7.96·46-s − 8.66·47-s − 6.96·49-s − 7.93·52-s + ⋯
L(s)  = 1  + 1.78·2-s + 2.17·4-s − 0.0655·7-s + 2.08·8-s − 1.53·11-s − 0.506·13-s − 0.116·14-s + 1.54·16-s − 1.02·17-s − 1.97·19-s − 2.72·22-s + 0.659·23-s − 0.902·26-s − 0.142·28-s − 0.185·29-s + 0.578·31-s + 0.669·32-s − 1.83·34-s − 0.325·37-s − 3.52·38-s + 1.55·41-s − 1.20·43-s − 3.32·44-s + 1.17·46-s − 1.26·47-s − 0.995·49-s − 1.10·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 - 2.51T + 2T^{2} \)
7 \( 1 + 0.173T + 7T^{2} \)
11 \( 1 + 5.08T + 11T^{2} \)
13 \( 1 + 1.82T + 13T^{2} \)
17 \( 1 + 4.24T + 17T^{2} \)
19 \( 1 + 8.62T + 19T^{2} \)
23 \( 1 - 3.16T + 23T^{2} \)
31 \( 1 - 3.22T + 31T^{2} \)
37 \( 1 + 1.97T + 37T^{2} \)
41 \( 1 - 9.96T + 41T^{2} \)
43 \( 1 + 7.91T + 43T^{2} \)
47 \( 1 + 8.66T + 47T^{2} \)
53 \( 1 - 5.40T + 53T^{2} \)
59 \( 1 + 7.66T + 59T^{2} \)
61 \( 1 - 2.76T + 61T^{2} \)
67 \( 1 + 8.13T + 67T^{2} \)
71 \( 1 - 6.25T + 71T^{2} \)
73 \( 1 - 6.74T + 73T^{2} \)
79 \( 1 - 4.54T + 79T^{2} \)
83 \( 1 + 11.6T + 83T^{2} \)
89 \( 1 - 16.4T + 89T^{2} \)
97 \( 1 + 2.74T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41339506898557750349160969213, −6.59085543652626634744967595426, −6.22535381044083932231269078235, −5.26437096444356329019281386103, −4.77286672862971458909570129277, −4.23839635581484150926923707711, −3.24100264441418227902801185836, −2.51692561164157743966688090238, −1.97790186832997501768146842664, 0, 1.97790186832997501768146842664, 2.51692561164157743966688090238, 3.24100264441418227902801185836, 4.23839635581484150926923707711, 4.77286672862971458909570129277, 5.26437096444356329019281386103, 6.22535381044083932231269078235, 6.59085543652626634744967595426, 7.41339506898557750349160969213

Graph of the $Z$-function along the critical line