L(s) = 1 | − 2-s − 5-s + 8-s + 10-s − 4·11-s + 6·13-s − 16-s + 3·17-s − 2·19-s + 4·22-s + 12·23-s + 5·25-s − 6·26-s + 18·29-s + 20·31-s − 3·34-s − 37-s + 2·38-s − 40-s + 3·41-s − 16·43-s − 12·46-s − 4·47-s + 7·49-s − 5·50-s − 6·53-s + 4·55-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.447·5-s + 0.353·8-s + 0.316·10-s − 1.20·11-s + 1.66·13-s − 1/4·16-s + 0.727·17-s − 0.458·19-s + 0.852·22-s + 2.50·23-s + 25-s − 1.17·26-s + 3.34·29-s + 3.59·31-s − 0.514·34-s − 0.164·37-s + 0.324·38-s − 0.158·40-s + 0.468·41-s − 2.43·43-s − 1.76·46-s − 0.583·47-s + 49-s − 0.707·50-s − 0.824·53-s + 0.539·55-s + ⋯ |
Λ(s)=(=(443556s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(443556s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
443556
= 22⋅34⋅372
|
Sign: |
1
|
Analytic conductor: |
28.2815 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 443556, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.423899452 |
L(21) |
≈ |
1.423899452 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | | 1 |
| 37 | C2 | 1+T+pT2 |
good | 5 | C22 | 1+T−4T2+pT3+p2T4 |
| 7 | C22 | 1−pT2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C22 | 1−6T+23T2−6pT3+p2T4 |
| 17 | C22 | 1−3T−8T2−3pT3+p2T4 |
| 19 | C22 | 1+2T−15T2+2pT3+p2T4 |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C2 | (1−9T+pT2)2 |
| 31 | C2 | (1−10T+pT2)2 |
| 41 | C22 | 1−3T−32T2−3pT3+p2T4 |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | C2 | (1+2T+pT2)2 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1−8T+5T2−8pT3+p2T4 |
| 61 | C22 | 1−5T−36T2−5pT3+p2T4 |
| 67 | C22 | 1−6T−31T2−6pT3+p2T4 |
| 71 | C22 | 1−pT2+p2T4 |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C22 | 1+6T−43T2+6pT3+p2T4 |
| 83 | C22 | 1−2T−79T2−2pT3+p2T4 |
| 89 | C22 | 1+13T+80T2+13pT3+p2T4 |
| 97 | C2 | (1−3T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56182993229973597377111061432, −10.43137175751561101728152793698, −9.842415721938944643242407657148, −9.620051478534108353908660449138, −8.605848493459808768427459796294, −8.517268320953162470790712985072, −8.250448953941239666876287998488, −8.142501523555363276404054290578, −7.05122773389641291060436914852, −6.90405443356493407183197926199, −6.44391746946068000561569181949, −5.92060136837988213742049818426, −5.03788140805041894714386836674, −4.83800202762840085182671713931, −4.43072838136009752251176800975, −3.48482059807355046542627915642, −2.82793741257533133459222477835, −2.76348563949483340092135235285, −1.05977880508536725700771349528, −1.01936612968966133430867180724,
1.01936612968966133430867180724, 1.05977880508536725700771349528, 2.76348563949483340092135235285, 2.82793741257533133459222477835, 3.48482059807355046542627915642, 4.43072838136009752251176800975, 4.83800202762840085182671713931, 5.03788140805041894714386836674, 5.92060136837988213742049818426, 6.44391746946068000561569181949, 6.90405443356493407183197926199, 7.05122773389641291060436914852, 8.142501523555363276404054290578, 8.250448953941239666876287998488, 8.517268320953162470790712985072, 8.605848493459808768427459796294, 9.620051478534108353908660449138, 9.842415721938944643242407657148, 10.43137175751561101728152793698, 10.56182993229973597377111061432