Properties

Label 2-6660-1.1-c1-0-32
Degree $2$
Conductor $6660$
Sign $1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 1.26·7-s + 5.46·11-s + 4·13-s + 4·17-s + 6.19·19-s + 8.92·23-s + 25-s − 7.46·29-s + 10.1·31-s − 1.26·35-s + 37-s − 4.92·41-s + 6·43-s − 1.26·47-s − 5.39·49-s − 12.9·53-s − 5.46·55-s − 3.66·59-s + 14·61-s − 4·65-s − 5.26·67-s − 8·71-s − 10.3·73-s + 6.92·77-s + 6.19·79-s − 1.66·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.479·7-s + 1.64·11-s + 1.10·13-s + 0.970·17-s + 1.42·19-s + 1.86·23-s + 0.200·25-s − 1.38·29-s + 1.83·31-s − 0.214·35-s + 0.164·37-s − 0.769·41-s + 0.914·43-s − 0.184·47-s − 0.770·49-s − 1.77·53-s − 0.736·55-s − 0.476·59-s + 1.79·61-s − 0.496·65-s − 0.643·67-s − 0.949·71-s − 1.21·73-s + 0.789·77-s + 0.697·79-s − 0.182·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.850563865\)
\(L(\frac12)\) \(\approx\) \(2.850563865\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 - T \)
good7 \( 1 - 1.26T + 7T^{2} \)
11 \( 1 - 5.46T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 - 4T + 17T^{2} \)
19 \( 1 - 6.19T + 19T^{2} \)
23 \( 1 - 8.92T + 23T^{2} \)
29 \( 1 + 7.46T + 29T^{2} \)
31 \( 1 - 10.1T + 31T^{2} \)
41 \( 1 + 4.92T + 41T^{2} \)
43 \( 1 - 6T + 43T^{2} \)
47 \( 1 + 1.26T + 47T^{2} \)
53 \( 1 + 12.9T + 53T^{2} \)
59 \( 1 + 3.66T + 59T^{2} \)
61 \( 1 - 14T + 61T^{2} \)
67 \( 1 + 5.26T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 10.3T + 73T^{2} \)
79 \( 1 - 6.19T + 79T^{2} \)
83 \( 1 + 1.66T + 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.985796035268412574264512571425, −7.30003461503997691114460293543, −6.64194599837109156851624099607, −5.90989875910007022026534618012, −5.11063074685569888081893924172, −4.34665405293149061196932876670, −3.51683620110618350610943882838, −3.04029320729344446829243626781, −1.40885739769473434892341782349, −1.06571257106687043127735882754, 1.06571257106687043127735882754, 1.40885739769473434892341782349, 3.04029320729344446829243626781, 3.51683620110618350610943882838, 4.34665405293149061196932876670, 5.11063074685569888081893924172, 5.90989875910007022026534618012, 6.64194599837109156851624099607, 7.30003461503997691114460293543, 7.985796035268412574264512571425

Graph of the $Z$-function along the critical line