L(s) = 1 | + (−0.866 − 0.5i)3-s + (2.08 + 3.61i)5-s + (2.39 + 1.12i)7-s + (0.499 + 0.866i)9-s + (0.855 − 1.48i)11-s − 1.54·13-s − 4.17i·15-s + (2.02 + 1.16i)17-s + (−6.09 + 3.52i)19-s + (−1.51 − 2.16i)21-s + (0.406 − 0.234i)23-s + (−6.21 + 10.7i)25-s − 0.999i·27-s − 3.33i·29-s + (−1.58 + 2.73i)31-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.288i)3-s + (0.933 + 1.61i)5-s + (0.905 + 0.423i)7-s + (0.166 + 0.288i)9-s + (0.257 − 0.446i)11-s − 0.427·13-s − 1.07i·15-s + (0.490 + 0.282i)17-s + (−1.39 + 0.807i)19-s + (−0.330 − 0.473i)21-s + (0.0846 − 0.0488i)23-s + (−1.24 + 2.15i)25-s − 0.192i·27-s − 0.620i·29-s + (−0.284 + 0.491i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.351 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.351 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28148 + 0.888192i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28148 + 0.888192i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 + (-2.39 - 1.12i)T \) |
good | 5 | \( 1 + (-2.08 - 3.61i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.855 + 1.48i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.54T + 13T^{2} \) |
| 17 | \( 1 + (-2.02 - 1.16i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.09 - 3.52i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.406 + 0.234i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.33iT - 29T^{2} \) |
| 31 | \( 1 + (1.58 - 2.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.74 + 4.47i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5.31iT - 41T^{2} \) |
| 43 | \( 1 - 3.42T + 43T^{2} \) |
| 47 | \( 1 + (-2.95 - 5.11i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.35 + 0.781i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.26 - 3.04i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.55 - 7.89i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.73 - 6.47i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.49iT - 71T^{2} \) |
| 73 | \( 1 + (12.5 + 7.26i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.46 + 0.843i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 2.72iT - 83T^{2} \) |
| 89 | \( 1 + (-1.83 + 1.06i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.95iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68102590266737839233230902650, −10.13079062162782331330115967656, −9.000005284062551375072698776701, −7.86863315008848816314713490379, −7.06109848247942972635832014687, −6.02445041951728629733655827739, −5.70016420968434251255399960346, −4.16561369212532162647708700879, −2.70321127504807673346157178329, −1.80018703046675539691505496409,
0.941121684294113059470972069513, 2.11874760801327617736902049515, 4.28905247744699092683339407856, 4.80603256006735268177059220381, 5.56723868912194765329612259308, 6.64424364998111769249867900111, 7.87658907474041497675819789928, 8.751441249446227943703547661996, 9.495035299303273915261360461853, 10.21352793872378372056680193637