L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.500 − 0.866i)4-s + (−2.59 − 1.5i)7-s + 3i·8-s + (−1 + 1.73i)11-s + (−1.73 + i)13-s + (1.5 + 2.59i)14-s + (0.500 − 0.866i)16-s + 4i·17-s + 8·19-s + (1.73 − 0.999i)22-s + (−2.59 + 1.5i)23-s + 1.99·26-s + 3i·28-s + (0.5 − 0.866i)29-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.250 − 0.433i)4-s + (−0.981 − 0.566i)7-s + 1.06i·8-s + (−0.301 + 0.522i)11-s + (−0.480 + 0.277i)13-s + (0.400 + 0.694i)14-s + (0.125 − 0.216i)16-s + 0.970i·17-s + 1.83·19-s + (0.369 − 0.213i)22-s + (−0.541 + 0.312i)23-s + 0.392·26-s + 0.566i·28-s + (0.0928 − 0.160i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.687 - 0.726i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.687 - 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.529410 + 0.227808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.529410 + 0.227808i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.866 + 0.5i)T + (1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (2.59 + 1.5i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.73 - i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 - 8T + 19T^{2} \) |
| 23 | \( 1 + (2.59 - 1.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4iT - 37T^{2} \) |
| 41 | \( 1 + (-2.5 - 4.33i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.92 - 4i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.06 + 3.5i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2iT - 53T^{2} \) |
| 59 | \( 1 + (-7 - 12.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.59 + 1.5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 - 4iT - 73T^{2} \) |
| 79 | \( 1 + (3 - 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.79 - 4.5i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 15T + 89T^{2} \) |
| 97 | \( 1 + (-1.73 - i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22407999000492943217883549543, −9.887697750403088476177685671307, −9.215358756927379140123313675578, −8.070132340964677675155044062206, −7.24175662027074163879985833183, −6.14821909496671207394796014582, −5.19054047779975664598592125918, −4.03289701584901501325640499204, −2.71976817588939256949472524394, −1.24308645829007819880232275434,
0.42353469952578296085656667924, 2.77109530669204589411747202351, 3.56402857927525764084556600102, 5.03556487538940634643289030534, 6.02317889951852103025632616963, 7.11118042648535941362385945832, 7.73778310422818767144483377660, 8.738211807504768224312620157485, 9.522507313171193712129945389851, 9.920074968257708355999846022191