L(s) = 1 | + (−1.55 − 1.30i)2-s + (−1.45 + 0.933i)3-s + (0.364 + 2.06i)4-s + (3.47 + 0.449i)6-s + (0.0652 − 0.370i)7-s + (0.101 − 0.176i)8-s + (1.25 − 2.72i)9-s + (0.272 − 0.0993i)11-s + (−2.46 − 2.67i)12-s + (−0.677 + 0.568i)13-s + (−0.583 + 0.489i)14-s + (3.56 − 1.29i)16-s + (−2.32 − 4.02i)17-s + (−5.49 + 2.59i)18-s + (−1.75 + 3.03i)19-s + ⋯ |
L(s) = 1 | + (−1.09 − 0.920i)2-s + (−0.842 + 0.539i)3-s + (0.182 + 1.03i)4-s + (1.42 + 0.183i)6-s + (0.0246 − 0.139i)7-s + (0.0359 − 0.0622i)8-s + (0.418 − 0.908i)9-s + (0.0823 − 0.0299i)11-s + (−0.711 − 0.772i)12-s + (−0.187 + 0.157i)13-s + (−0.155 + 0.130i)14-s + (0.890 − 0.323i)16-s + (−0.563 − 0.976i)17-s + (−1.29 + 0.611i)18-s + (−0.401 + 0.695i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.823−0.567i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.823−0.567i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.823−0.567i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.823−0.567i)
|
Particular Values
L(1) |
≈ |
0.394311+0.122648i |
L(21) |
≈ |
0.394311+0.122648i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.45−0.933i)T |
| 5 | 1 |
good | 2 | 1+(1.55+1.30i)T+(0.347+1.96i)T2 |
| 7 | 1+(−0.0652+0.370i)T+(−6.57−2.39i)T2 |
| 11 | 1+(−0.272+0.0993i)T+(8.42−7.07i)T2 |
| 13 | 1+(0.677−0.568i)T+(2.25−12.8i)T2 |
| 17 | 1+(2.32+4.02i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.75−3.03i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.0948+0.537i)T+(−21.6+7.86i)T2 |
| 29 | 1+(4.65+3.90i)T+(5.03+28.5i)T2 |
| 31 | 1+(−0.953−5.40i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−5.47−9.48i)T+(−18.5+32.0i)T2 |
| 41 | 1+(7.28−6.11i)T+(7.11−40.3i)T2 |
| 43 | 1+(−9.54+3.47i)T+(32.9−27.6i)T2 |
| 47 | 1+(1.09−6.23i)T+(−44.1−16.0i)T2 |
| 53 | 1−12.2T+53T2 |
| 59 | 1+(1.18+0.432i)T+(45.1+37.9i)T2 |
| 61 | 1+(−0.499+2.83i)T+(−57.3−20.8i)T2 |
| 67 | 1+(6.78−5.69i)T+(11.6−65.9i)T2 |
| 71 | 1+(−5.36−9.29i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−0.389+0.674i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−5.29−4.44i)T+(13.7+77.7i)T2 |
| 83 | 1+(−6.88−5.77i)T+(14.4+81.7i)T2 |
| 89 | 1+(3.11−5.38i)T+(−44.5−77.0i)T2 |
| 97 | 1+(13.1−4.79i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52234951230043697248086287750, −9.840348990206574738996116196091, −9.226106606382658666032147561194, −8.307348021549343635640449966776, −7.18903475470814063319667309335, −6.11605379437881612844838642962, −5.03648770069329825986481605031, −3.93175024733546852305157035703, −2.58850330367260435836384117536, −1.06478601189250422284587249680,
0.43064993584842492855702380591, 2.04657489386767476428695165647, 4.07096316557271757081150308469, 5.47857956746317986793217944165, 6.15437056767203770731245203560, 7.05482091456594307084002682869, 7.62556774870938086356923744265, 8.607069669557467518372935749060, 9.316865280991189701768725136864, 10.43037531847494923503517003438