L(s) = 1 | + (−1.01 − 0.852i)2-s + (0.196 − 1.72i)3-s + (−0.0418 − 0.237i)4-s + (−1.66 + 1.58i)6-s + (−0.769 + 4.36i)7-s + (−1.48 + 2.57i)8-s + (−2.92 − 0.674i)9-s + (3.91 − 1.42i)11-s + (−0.416 + 0.0254i)12-s + (−1.15 + 0.972i)13-s + (4.50 − 3.77i)14-s + (3.25 − 1.18i)16-s + (0.568 + 0.985i)17-s + (2.39 + 3.17i)18-s + (−3.37 + 5.84i)19-s + ⋯ |
L(s) = 1 | + (−0.718 − 0.602i)2-s + (0.113 − 0.993i)3-s + (−0.0209 − 0.118i)4-s + (−0.680 + 0.645i)6-s + (−0.291 + 1.65i)7-s + (−0.525 + 0.910i)8-s + (−0.974 − 0.224i)9-s + (1.17 − 0.429i)11-s + (−0.120 + 0.00735i)12-s + (−0.321 + 0.269i)13-s + (1.20 − 1.01i)14-s + (0.812 − 0.295i)16-s + (0.137 + 0.238i)17-s + (0.564 + 0.748i)18-s + (−0.774 + 1.34i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.992−0.124i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.992−0.124i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.992−0.124i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.992−0.124i)
|
Particular Values
L(1) |
≈ |
0.727102+0.0455687i |
L(21) |
≈ |
0.727102+0.0455687i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.196+1.72i)T |
| 5 | 1 |
good | 2 | 1+(1.01+0.852i)T+(0.347+1.96i)T2 |
| 7 | 1+(0.769−4.36i)T+(−6.57−2.39i)T2 |
| 11 | 1+(−3.91+1.42i)T+(8.42−7.07i)T2 |
| 13 | 1+(1.15−0.972i)T+(2.25−12.8i)T2 |
| 17 | 1+(−0.568−0.985i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.37−5.84i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.38−7.86i)T+(−21.6+7.86i)T2 |
| 29 | 1+(−1.89−1.58i)T+(5.03+28.5i)T2 |
| 31 | 1+(−0.369−2.09i)T+(−29.1+10.6i)T2 |
| 37 | 1+(4.99+8.65i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.384−0.322i)T+(7.11−40.3i)T2 |
| 43 | 1+(0.102−0.0373i)T+(32.9−27.6i)T2 |
| 47 | 1+(−1.31+7.45i)T+(−44.1−16.0i)T2 |
| 53 | 1−3.96T+53T2 |
| 59 | 1+(−7.67−2.79i)T+(45.1+37.9i)T2 |
| 61 | 1+(2.14−12.1i)T+(−57.3−20.8i)T2 |
| 67 | 1+(2.25−1.88i)T+(11.6−65.9i)T2 |
| 71 | 1+(3.78+6.56i)T+(−35.5+61.4i)T2 |
| 73 | 1+(5.12−8.88i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3.74−3.14i)T+(13.7+77.7i)T2 |
| 83 | 1+(2.78+2.34i)T+(14.4+81.7i)T2 |
| 89 | 1+(−5.74+9.95i)T+(−44.5−77.0i)T2 |
| 97 | 1+(7.36−2.68i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48921700559530753948990031020, −9.398769314908662327968015619874, −8.857952632272465125490908783422, −8.327005366724167791213020037536, −7.02133684116257462502388942758, −5.89872442982806987612776979573, −5.57816963142236041174722253522, −3.48331344971189240677768288235, −2.27088256121941055234924192139, −1.45694438158152312893269646198,
0.50736953889802604768916836579, 3.01651975608031461906295509900, 4.11095164313952712896450314384, 4.65043299326080376589851286177, 6.50261907432109747227787523331, 6.89863012216865603043214078898, 7.987303993594420521245335860476, 8.816971863171235374917458027389, 9.579006712196541704690545239189, 10.22742481391169073451398159729