L(s) = 1 | + (1.62 − 1.93i)2-s + (1.32 − 1.11i)3-s + (−0.766 − 4.34i)4-s − 4.38i·6-s + (3.01 + 0.532i)7-s + (−5.28 − 3.05i)8-s + (0.520 − 2.95i)9-s + (−5.29 + 1.92i)11-s + (−5.85 − 4.91i)12-s + (2.71 + 3.23i)13-s + (5.94 − 4.98i)14-s + (−6.23 + 2.27i)16-s + (1.43 − 0.826i)17-s + (−4.88 − 5.81i)18-s + (0.120 − 0.208i)19-s + ⋯ |
L(s) = 1 | + (1.15 − 1.37i)2-s + (0.766 − 0.642i)3-s + (−0.383 − 2.17i)4-s − 1.79i·6-s + (1.14 + 0.201i)7-s + (−1.86 − 1.07i)8-s + (0.173 − 0.984i)9-s + (−1.59 + 0.581i)11-s + (−1.68 − 1.41i)12-s + (0.753 + 0.898i)13-s + (1.58 − 1.33i)14-s + (−1.55 + 0.567i)16-s + (0.347 − 0.200i)17-s + (−1.15 − 1.37i)18-s + (0.0276 − 0.0479i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(−0.865+0.501i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(−0.865+0.501i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
−0.865+0.501i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(124,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), −0.865+0.501i)
|
Particular Values
L(1) |
≈ |
0.912703−3.39421i |
L(21) |
≈ |
0.912703−3.39421i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.32+1.11i)T |
| 5 | 1 |
good | 2 | 1+(−1.62+1.93i)T+(−0.347−1.96i)T2 |
| 7 | 1+(−3.01−0.532i)T+(6.57+2.39i)T2 |
| 11 | 1+(5.29−1.92i)T+(8.42−7.07i)T2 |
| 13 | 1+(−2.71−3.23i)T+(−2.25+12.8i)T2 |
| 17 | 1+(−1.43+0.826i)T+(8.5−14.7i)T2 |
| 19 | 1+(−0.120+0.208i)T+(−9.5−16.4i)T2 |
| 23 | 1+(7.34−1.29i)T+(21.6−7.86i)T2 |
| 29 | 1+(−5.90−4.95i)T+(5.03+28.5i)T2 |
| 31 | 1+(−0.858−4.86i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−2.15+1.24i)T+(18.5−32.0i)T2 |
| 41 | 1+(0.109−0.0918i)T+(7.11−40.3i)T2 |
| 43 | 1+(−0.256−0.705i)T+(−32.9+27.6i)T2 |
| 47 | 1+(4.58+0.807i)T+(44.1+16.0i)T2 |
| 53 | 1−12.1iT−53T2 |
| 59 | 1+(4.45+1.62i)T+(45.1+37.9i)T2 |
| 61 | 1+(−2.41+13.6i)T+(−57.3−20.8i)T2 |
| 67 | 1+(4.73+5.64i)T+(−11.6+65.9i)T2 |
| 71 | 1+(−2.45−4.24i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−0.196−0.113i)T+(36.5+63.2i)T2 |
| 79 | 1+(−7.53−6.32i)T+(13.7+77.7i)T2 |
| 83 | 1+(−5.69+6.78i)T+(−14.4−81.7i)T2 |
| 89 | 1+(−3.33+5.76i)T+(−44.5−77.0i)T2 |
| 97 | 1+(3.26+8.95i)T+(−74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42725738677588412562146941051, −9.537835208141581391551842581101, −8.409173607697516748365266946613, −7.65981712342045639784283407560, −6.31470314610668691531154384607, −5.17927980558880865999322663180, −4.41627608687596871065824102618, −3.25350824375078114235048697771, −2.24135412528041975636787624262, −1.48445222708352362642519633307,
2.59296822880133799517056746840, 3.69112664571016319352659580784, 4.58880572455867920206105068126, 5.36349336157572243850622552079, 6.10045618980844807488081763959, 7.66779727235471810849593044651, 8.112207589054028994927766709683, 8.376615474006188502557979786107, 10.04678566461786229905750285130, 10.77271000708974388632975243310