L(s) = 1 | + (0.267 − 0.318i)2-s + (1.72 − 0.159i)3-s + (0.317 + 1.79i)4-s + (0.409 − 0.591i)6-s + (−1.29 − 0.229i)7-s + (1.37 + 0.795i)8-s + (2.94 − 0.551i)9-s + (4.90 − 1.78i)11-s + (0.834 + 3.05i)12-s + (0.0116 + 0.0138i)13-s + (−0.419 + 0.352i)14-s + (−2.81 + 1.02i)16-s + (−2.71 + 1.56i)17-s + (0.612 − 1.08i)18-s + (0.208 − 0.361i)19-s + ⋯ |
L(s) = 1 | + (0.188 − 0.225i)2-s + (0.995 − 0.0922i)3-s + (0.158 + 0.899i)4-s + (0.167 − 0.241i)6-s + (−0.491 − 0.0866i)7-s + (0.486 + 0.281i)8-s + (0.982 − 0.183i)9-s + (1.47 − 0.537i)11-s + (0.241 + 0.881i)12-s + (0.00321 + 0.00383i)13-s + (−0.112 + 0.0941i)14-s + (−0.703 + 0.256i)16-s + (−0.658 + 0.379i)17-s + (0.144 − 0.255i)18-s + (0.0478 − 0.0829i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.961−0.275i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.961−0.275i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.961−0.275i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(124,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.961−0.275i)
|
Particular Values
L(1) |
≈ |
2.45667+0.344915i |
L(21) |
≈ |
2.45667+0.344915i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.72+0.159i)T |
| 5 | 1 |
good | 2 | 1+(−0.267+0.318i)T+(−0.347−1.96i)T2 |
| 7 | 1+(1.29+0.229i)T+(6.57+2.39i)T2 |
| 11 | 1+(−4.90+1.78i)T+(8.42−7.07i)T2 |
| 13 | 1+(−0.0116−0.0138i)T+(−2.25+12.8i)T2 |
| 17 | 1+(2.71−1.56i)T+(8.5−14.7i)T2 |
| 19 | 1+(−0.208+0.361i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.01−0.179i)T+(21.6−7.86i)T2 |
| 29 | 1+(−5.98−5.01i)T+(5.03+28.5i)T2 |
| 31 | 1+(−0.647−3.67i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−3.83+2.21i)T+(18.5−32.0i)T2 |
| 41 | 1+(2.81−2.36i)T+(7.11−40.3i)T2 |
| 43 | 1+(2.84+7.80i)T+(−32.9+27.6i)T2 |
| 47 | 1+(6.99+1.23i)T+(44.1+16.0i)T2 |
| 53 | 1−1.30iT−53T2 |
| 59 | 1+(3.47+1.26i)T+(45.1+37.9i)T2 |
| 61 | 1+(−1.20+6.80i)T+(−57.3−20.8i)T2 |
| 67 | 1+(7.08+8.44i)T+(−11.6+65.9i)T2 |
| 71 | 1+(−3.04−5.26i)T+(−35.5+61.4i)T2 |
| 73 | 1+(0.473+0.273i)T+(36.5+63.2i)T2 |
| 79 | 1+(0.374+0.314i)T+(13.7+77.7i)T2 |
| 83 | 1+(−2.96+3.53i)T+(−14.4−81.7i)T2 |
| 89 | 1+(1.68−2.92i)T+(−44.5−77.0i)T2 |
| 97 | 1+(3.40+9.34i)T+(−74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53946569621091503188580563552, −9.452073792867935622005925072294, −8.726443631070632544078919641788, −8.144830845805705431457229666032, −6.94470916533015248601483486586, −6.49086426920036285594949847188, −4.61733593020316879967267102870, −3.68556506626407836715348994854, −3.05515276796075634440844657230, −1.69534182797887690595467793265,
1.40051767253775882849923089256, 2.63246080980123769924725029928, 4.03329416175263954167204016299, 4.75743081925946595170405204146, 6.30111969419873959695558499225, 6.71595168720651318427060114433, 7.81758307507721995164203065664, 8.937406432807379721511668068295, 9.637237737867987003908286410191, 10.07214158430828920723683593732