L(s) = 1 | + (−0.366 + 1.36i)2-s + (−1.73 − i)4-s + (3 + 3i)5-s + (2 − 1.99i)8-s + (−1.5 + 2.59i)9-s + (−5.19 + 3i)10-s + (1.99 + 3.46i)16-s + (1.73 + i)17-s + (−3 − 3i)18-s + (−2.19 − 8.19i)20-s + 13i·25-s + (−2 − 3.46i)29-s + (−5.46 + 1.46i)32-s + (−2 + 1.99i)34-s + (5.19 − 3i)36-s + (6.83 + 1.83i)37-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.866 − 0.5i)4-s + (1.34 + 1.34i)5-s + (0.707 − 0.707i)8-s + (−0.5 + 0.866i)9-s + (−1.64 + 0.948i)10-s + (0.499 + 0.866i)16-s + (0.420 + 0.242i)17-s + (−0.707 − 0.707i)18-s + (−0.491 − 1.83i)20-s + 2.60i·25-s + (−0.371 − 0.643i)29-s + (−0.965 + 0.258i)32-s + (−0.342 + 0.342i)34-s + (0.866 − 0.5i)36-s + (1.12 + 0.300i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.852 - 0.522i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.852 - 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.373729 + 1.32613i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.373729 + 1.32613i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.366 - 1.36i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-3 - 3i)T + 5iT^{2} \) |
| 7 | \( 1 + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.73 - i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2 + 3.46i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + (-6.83 - 1.83i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-0.366 + 1.36i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 + 14T + 53T^{2} \) |
| 59 | \( 1 + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (5 - 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-11 + 11i)T - 73iT^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + (-4.09 - 1.09i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-6.83 + 1.83i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60979845048149263333218269247, −9.897286603694313186915734159965, −9.231748434323597644927826497378, −8.030141007886339660248448996134, −7.32650536963385638499594939900, −6.24889838888420217726863325336, −5.86255091845933712618838626348, −4.79414530924544780636651368205, −3.15956544893362667504043846141, −1.90318312503936632538056224422,
0.832882557598125312580873013832, 1.96469539602603035875951488532, 3.26304847748242177882382049717, 4.59826070251664596999830374315, 5.40715543624795209968474517476, 6.32697496785207348441542333847, 7.947445050499528633989426308714, 8.790726349946872776840513089363, 9.450544690426406982458687399905, 9.836767175023846855540499655496