L(s) = 1 | + (1.23 + 1.21i)3-s + (2.12 − 3.67i)5-s + (1.38 − 2.39i)7-s + (0.0360 + 2.99i)9-s + (−1.31 + 2.26i)11-s − 0.0946·13-s + (7.09 − 1.94i)15-s + (−0.170 − 0.295i)17-s + (−1.77 − 3.97i)19-s + (4.61 − 1.26i)21-s + 4.62·23-s + (−6.51 − 11.2i)25-s + (−3.60 + 3.73i)27-s + (0.706 + 1.22i)29-s + (1.43 + 2.48i)31-s + ⋯ |
L(s) = 1 | + (0.711 + 0.702i)3-s + (0.949 − 1.64i)5-s + (0.522 − 0.904i)7-s + (0.0120 + 0.999i)9-s + (−0.395 + 0.684i)11-s − 0.0262·13-s + (1.83 − 0.502i)15-s + (−0.0413 − 0.0715i)17-s + (−0.408 − 0.912i)19-s + (1.00 − 0.276i)21-s + 0.963·23-s + (−1.30 − 2.25i)25-s + (−0.694 + 0.719i)27-s + (0.131 + 0.227i)29-s + (0.257 + 0.446i)31-s + ⋯ |
Λ(s)=(=(684s/2ΓC(s)L(s)(0.887+0.460i)Λ(2−s)
Λ(s)=(=(684s/2ΓC(s+1/2)L(s)(0.887+0.460i)Λ(1−s)
Degree: |
2 |
Conductor: |
684
= 22⋅32⋅19
|
Sign: |
0.887+0.460i
|
Analytic conductor: |
5.46176 |
Root analytic conductor: |
2.33704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ684(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 684, ( :1/2), 0.887+0.460i)
|
Particular Values
L(1) |
≈ |
2.20019−0.536865i |
L(21) |
≈ |
2.20019−0.536865i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.23−1.21i)T |
| 19 | 1+(1.77+3.97i)T |
good | 5 | 1+(−2.12+3.67i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−1.38+2.39i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1.31−2.26i)T+(−5.5−9.52i)T2 |
| 13 | 1+0.0946T+13T2 |
| 17 | 1+(0.170+0.295i)T+(−8.5+14.7i)T2 |
| 23 | 1−4.62T+23T2 |
| 29 | 1+(−0.706−1.22i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.43−2.48i)T+(−15.5+26.8i)T2 |
| 37 | 1+10.6T+37T2 |
| 41 | 1+(−1.21+2.10i)T+(−20.5−35.5i)T2 |
| 43 | 1−12.5T+43T2 |
| 47 | 1+(−3.42−5.92i)T+(−23.5+40.7i)T2 |
| 53 | 1+(2.21−3.83i)T+(−26.5−45.8i)T2 |
| 59 | 1+(6.77−11.7i)T+(−29.5−51.0i)T2 |
| 61 | 1+(0.658+1.14i)T+(−30.5+52.8i)T2 |
| 67 | 1−7.22T+67T2 |
| 71 | 1+(−5.00−8.67i)T+(−35.5+61.4i)T2 |
| 73 | 1+(4.76+8.24i)T+(−36.5+63.2i)T2 |
| 79 | 1−3.53T+79T2 |
| 83 | 1+(1.93−3.35i)T+(−41.5−71.8i)T2 |
| 89 | 1+(5.91−10.2i)T+(−44.5−77.0i)T2 |
| 97 | 1+0.430T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35164761089646785721156455173, −9.302048680747654237510244464632, −8.968502905001915389421720118088, −8.032860135590310545191301847535, −7.09359151136926624274195915735, −5.50596219319524333426845197137, −4.76463336532856758691372249533, −4.23336719932705701038536569466, −2.51534515430768864104264198256, −1.27226117347128732994584588463,
1.88819157180054359644833073166, 2.64139568848388728836208206072, 3.52509941636821749643471538615, 5.48575187158122205426345982473, 6.19069173796888424393635136454, 6.98759318890235949615112636826, 7.916379252272217415917307662626, 8.768474653498457231152290650075, 9.643759616142362749571224689850, 10.57867826427003021579266021326