L(s) = 1 | + (1.24 − 1.20i)3-s + (0.745 − 1.29i)5-s + (0.903 − 1.56i)7-s + (0.118 − 2.99i)9-s + (0.400 − 0.694i)11-s − 1.50·13-s + (−0.618 − 2.50i)15-s + (−1.44 − 2.49i)17-s + (−2.63 + 3.47i)19-s + (−0.750 − 3.03i)21-s + 3.01·23-s + (1.38 + 2.40i)25-s + (−3.45 − 3.88i)27-s + (2.82 + 4.90i)29-s + (−1.97 − 3.42i)31-s + ⋯ |
L(s) = 1 | + (0.720 − 0.693i)3-s + (0.333 − 0.577i)5-s + (0.341 − 0.591i)7-s + (0.0393 − 0.999i)9-s + (0.120 − 0.209i)11-s − 0.417·13-s + (−0.159 − 0.647i)15-s + (−0.349 − 0.605i)17-s + (−0.604 + 0.796i)19-s + (−0.163 − 0.663i)21-s + 0.628·23-s + (0.277 + 0.481i)25-s + (−0.664 − 0.747i)27-s + (0.525 + 0.910i)29-s + (−0.355 − 0.615i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0293 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0293 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38468 - 1.42589i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38468 - 1.42589i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.24 + 1.20i)T \) |
| 19 | \( 1 + (2.63 - 3.47i)T \) |
good | 5 | \( 1 + (-0.745 + 1.29i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.903 + 1.56i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.400 + 0.694i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.50T + 13T^{2} \) |
| 17 | \( 1 + (1.44 + 2.49i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 - 3.01T + 23T^{2} \) |
| 29 | \( 1 + (-2.82 - 4.90i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.97 + 3.42i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 3.08T + 37T^{2} \) |
| 41 | \( 1 + (-3.66 + 6.34i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 3.66T + 43T^{2} \) |
| 47 | \( 1 + (-0.0411 - 0.0713i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.16 + 2.01i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.33 + 5.77i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.37 - 9.30i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + 8.50T + 67T^{2} \) |
| 71 | \( 1 + (-0.0790 - 0.137i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.67 - 2.90i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 0.856T + 79T^{2} \) |
| 83 | \( 1 + (-2.39 + 4.14i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.35 + 5.81i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.87T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16407302489341106753224674405, −9.128702202830717354350372937041, −8.653079368143620153429605663685, −7.57600007498947330436382075691, −6.97902052577699233872274818780, −5.82477860231082146533381460313, −4.68908899265001632305841826382, −3.56191742412280979346506743250, −2.24450485225542157221479626857, −1.02706791393802880121905623657,
2.12290458415548938373368175537, 2.90571939855669024191230578125, 4.23753806858574832865633441348, 5.07916681459664336239593465381, 6.26737585747560475182150461166, 7.25418327049087348554300565966, 8.347488402839598385948240022576, 8.953186451711221311668151385719, 9.838951739428297861799588222811, 10.59793847860724954152661078716