L(s) = 1 | + (1.24 − 1.20i)3-s + (0.745 − 1.29i)5-s + (0.903 − 1.56i)7-s + (0.118 − 2.99i)9-s + (0.400 − 0.694i)11-s − 1.50·13-s + (−0.618 − 2.50i)15-s + (−1.44 − 2.49i)17-s + (−2.63 + 3.47i)19-s + (−0.750 − 3.03i)21-s + 3.01·23-s + (1.38 + 2.40i)25-s + (−3.45 − 3.88i)27-s + (2.82 + 4.90i)29-s + (−1.97 − 3.42i)31-s + ⋯ |
L(s) = 1 | + (0.720 − 0.693i)3-s + (0.333 − 0.577i)5-s + (0.341 − 0.591i)7-s + (0.0393 − 0.999i)9-s + (0.120 − 0.209i)11-s − 0.417·13-s + (−0.159 − 0.647i)15-s + (−0.349 − 0.605i)17-s + (−0.604 + 0.796i)19-s + (−0.163 − 0.663i)21-s + 0.628·23-s + (0.277 + 0.481i)25-s + (−0.664 − 0.747i)27-s + (0.525 + 0.910i)29-s + (−0.355 − 0.615i)31-s + ⋯ |
Λ(s)=(=(684s/2ΓC(s)L(s)(−0.0293+0.999i)Λ(2−s)
Λ(s)=(=(684s/2ΓC(s+1/2)L(s)(−0.0293+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
684
= 22⋅32⋅19
|
Sign: |
−0.0293+0.999i
|
Analytic conductor: |
5.46176 |
Root analytic conductor: |
2.33704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ684(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 684, ( :1/2), −0.0293+0.999i)
|
Particular Values
L(1) |
≈ |
1.38468−1.42589i |
L(21) |
≈ |
1.38468−1.42589i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.24+1.20i)T |
| 19 | 1+(2.63−3.47i)T |
good | 5 | 1+(−0.745+1.29i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−0.903+1.56i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.400+0.694i)T+(−5.5−9.52i)T2 |
| 13 | 1+1.50T+13T2 |
| 17 | 1+(1.44+2.49i)T+(−8.5+14.7i)T2 |
| 23 | 1−3.01T+23T2 |
| 29 | 1+(−2.82−4.90i)T+(−14.5+25.1i)T2 |
| 31 | 1+(1.97+3.42i)T+(−15.5+26.8i)T2 |
| 37 | 1+3.08T+37T2 |
| 41 | 1+(−3.66+6.34i)T+(−20.5−35.5i)T2 |
| 43 | 1−3.66T+43T2 |
| 47 | 1+(−0.0411−0.0713i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.16+2.01i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−3.33+5.77i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5.37−9.30i)T+(−30.5+52.8i)T2 |
| 67 | 1+8.50T+67T2 |
| 71 | 1+(−0.0790−0.137i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−1.67−2.90i)T+(−36.5+63.2i)T2 |
| 79 | 1+0.856T+79T2 |
| 83 | 1+(−2.39+4.14i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−3.35+5.81i)T+(−44.5−77.0i)T2 |
| 97 | 1+3.87T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16407302489341106753224674405, −9.128702202830717354350372937041, −8.653079368143620153429605663685, −7.57600007498947330436382075691, −6.97902052577699233872274818780, −5.82477860231082146533381460313, −4.68908899265001632305841826382, −3.56191742412280979346506743250, −2.24450485225542157221479626857, −1.02706791393802880121905623657,
2.12290458415548938373368175537, 2.90571939855669024191230578125, 4.23753806858574832865633441348, 5.07916681459664336239593465381, 6.26737585747560475182150461166, 7.25418327049087348554300565966, 8.347488402839598385948240022576, 8.953186451711221311668151385719, 9.838951739428297861799588222811, 10.59793847860724954152661078716