Properties

Label 2-693-1.1-c1-0-3
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.52·2-s + 4.39·4-s − 0.133·5-s − 7-s − 6.05·8-s + 0.337·10-s − 11-s + 0.133·13-s + 2.52·14-s + 6.52·16-s + 5.05·17-s − 0.924·19-s − 0.586·20-s + 2.52·22-s + 7.05·23-s − 4.98·25-s − 0.337·26-s − 4.39·28-s − 3.86·29-s + 2.79·31-s − 4.39·32-s − 12.7·34-s + 0.133·35-s + 9.98·37-s + 2.33·38-s + 0.808·40-s − 11.8·41-s + ⋯
L(s)  = 1  − 1.78·2-s + 2.19·4-s − 0.0596·5-s − 0.377·7-s − 2.14·8-s + 0.106·10-s − 0.301·11-s + 0.0370·13-s + 0.675·14-s + 1.63·16-s + 1.22·17-s − 0.212·19-s − 0.131·20-s + 0.539·22-s + 1.47·23-s − 0.996·25-s − 0.0662·26-s − 0.830·28-s − 0.717·29-s + 0.501·31-s − 0.777·32-s − 2.19·34-s + 0.0225·35-s + 1.64·37-s + 0.379·38-s + 0.127·40-s − 1.85·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5931917339\)
\(L(\frac12)\) \(\approx\) \(0.5931917339\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
good2 \( 1 + 2.52T + 2T^{2} \)
5 \( 1 + 0.133T + 5T^{2} \)
13 \( 1 - 0.133T + 13T^{2} \)
17 \( 1 - 5.05T + 17T^{2} \)
19 \( 1 + 0.924T + 19T^{2} \)
23 \( 1 - 7.05T + 23T^{2} \)
29 \( 1 + 3.86T + 29T^{2} \)
31 \( 1 - 2.79T + 31T^{2} \)
37 \( 1 - 9.98T + 37T^{2} \)
41 \( 1 + 11.8T + 41T^{2} \)
43 \( 1 + 3.05T + 43T^{2} \)
47 \( 1 - 3.07T + 47T^{2} \)
53 \( 1 - 4.79T + 53T^{2} \)
59 \( 1 - 12.6T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 - 8.92T + 67T^{2} \)
71 \( 1 - 6.11T + 71T^{2} \)
73 \( 1 - 7.86T + 73T^{2} \)
79 \( 1 - 14.1T + 79T^{2} \)
83 \( 1 - 1.20T + 83T^{2} \)
89 \( 1 + 15.5T + 89T^{2} \)
97 \( 1 - 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06287083629663070256959805184, −9.742622373161863821386341305810, −8.751931211758680633962335380238, −8.016988979946331964722263858808, −7.26462857320688202185871362338, −6.42103710521066609766729256108, −5.30200701719432773777941487258, −3.50835113085756827866004396710, −2.29477518003028835573674020964, −0.849121879007399067292849754039, 0.849121879007399067292849754039, 2.29477518003028835573674020964, 3.50835113085756827866004396710, 5.30200701719432773777941487258, 6.42103710521066609766729256108, 7.26462857320688202185871362338, 8.016988979946331964722263858808, 8.751931211758680633962335380238, 9.742622373161863821386341305810, 10.06287083629663070256959805184

Graph of the $Z$-function along the critical line