L(s) = 1 | + 3.56·2-s + 4.68·4-s + 15.6·5-s + 7·7-s − 11.8·8-s + 55.8·10-s − 11·11-s + 52.9·13-s + 24.9·14-s − 79.5·16-s + 77.1·17-s + 13.4·19-s + 73.4·20-s − 39.1·22-s + 59.0·23-s + 121.·25-s + 188.·26-s + 32.7·28-s + 69.3·29-s + 75.9·31-s − 188.·32-s + 274.·34-s + 109.·35-s − 335.·37-s + 47.7·38-s − 185.·40-s + 318.·41-s + ⋯ |
L(s) = 1 | + 1.25·2-s + 0.585·4-s + 1.40·5-s + 0.377·7-s − 0.521·8-s + 1.76·10-s − 0.301·11-s + 1.12·13-s + 0.475·14-s − 1.24·16-s + 1.10·17-s + 0.161·19-s + 0.821·20-s − 0.379·22-s + 0.535·23-s + 0.968·25-s + 1.42·26-s + 0.221·28-s + 0.443·29-s + 0.440·31-s − 1.04·32-s + 1.38·34-s + 0.530·35-s − 1.49·37-s + 0.203·38-s − 0.732·40-s + 1.21·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
5.319264612 |
L(21) |
≈ |
5.319264612 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1−3.56T+8T2 |
| 5 | 1−15.6T+125T2 |
| 13 | 1−52.9T+2.19e3T2 |
| 17 | 1−77.1T+4.91e3T2 |
| 19 | 1−13.4T+6.85e3T2 |
| 23 | 1−59.0T+1.21e4T2 |
| 29 | 1−69.3T+2.43e4T2 |
| 31 | 1−75.9T+2.97e4T2 |
| 37 | 1+335.T+5.06e4T2 |
| 41 | 1−318.T+6.89e4T2 |
| 43 | 1+57.2T+7.95e4T2 |
| 47 | 1−577.T+1.03e5T2 |
| 53 | 1+315.T+1.48e5T2 |
| 59 | 1−598.T+2.05e5T2 |
| 61 | 1+337.T+2.26e5T2 |
| 67 | 1+107.T+3.00e5T2 |
| 71 | 1+405.T+3.57e5T2 |
| 73 | 1+133.T+3.89e5T2 |
| 79 | 1+922.T+4.93e5T2 |
| 83 | 1−1.22e3T+5.71e5T2 |
| 89 | 1+1.58e3T+7.04e5T2 |
| 97 | 1+287.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17994027949927581836812395125, −9.238183426258638488630926694384, −8.449384439413613906694662761847, −7.10078077422777306636968571432, −5.98695121282127991147654217037, −5.63209837978939296006271690091, −4.71271466931354847951921708772, −3.52784013374602916837571307139, −2.52300906503682964861478311589, −1.24021236054099616543984647204,
1.24021236054099616543984647204, 2.52300906503682964861478311589, 3.52784013374602916837571307139, 4.71271466931354847951921708772, 5.63209837978939296006271690091, 5.98695121282127991147654217037, 7.10078077422777306636968571432, 8.449384439413613906694662761847, 9.238183426258638488630926694384, 10.17994027949927581836812395125