Properties

Label 2-693-1.1-c3-0-10
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.48·2-s − 1.82·4-s − 13.9·5-s − 7·7-s − 24.4·8-s − 34.5·10-s + 11·11-s − 53.9·13-s − 17.3·14-s − 46.0·16-s + 21.8·17-s + 73.6·19-s + 25.4·20-s + 27.3·22-s + 16.7·23-s + 68.8·25-s − 134.·26-s + 12.7·28-s − 153.·29-s + 224.·31-s + 80.9·32-s + 54.3·34-s + 97.4·35-s + 369.·37-s + 183.·38-s + 339.·40-s + 61.3·41-s + ⋯
L(s)  = 1  + 0.878·2-s − 0.228·4-s − 1.24·5-s − 0.377·7-s − 1.07·8-s − 1.09·10-s + 0.301·11-s − 1.15·13-s − 0.332·14-s − 0.719·16-s + 0.312·17-s + 0.889·19-s + 0.284·20-s + 0.264·22-s + 0.151·23-s + 0.550·25-s − 1.01·26-s + 0.0863·28-s − 0.985·29-s + 1.29·31-s + 0.447·32-s + 0.274·34-s + 0.470·35-s + 1.64·37-s + 0.781·38-s + 1.34·40-s + 0.233·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.404022928\)
\(L(\frac12)\) \(\approx\) \(1.404022928\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good2 \( 1 - 2.48T + 8T^{2} \)
5 \( 1 + 13.9T + 125T^{2} \)
13 \( 1 + 53.9T + 2.19e3T^{2} \)
17 \( 1 - 21.8T + 4.91e3T^{2} \)
19 \( 1 - 73.6T + 6.85e3T^{2} \)
23 \( 1 - 16.7T + 1.21e4T^{2} \)
29 \( 1 + 153.T + 2.43e4T^{2} \)
31 \( 1 - 224.T + 2.97e4T^{2} \)
37 \( 1 - 369.T + 5.06e4T^{2} \)
41 \( 1 - 61.3T + 6.89e4T^{2} \)
43 \( 1 - 37.2T + 7.95e4T^{2} \)
47 \( 1 + 279.T + 1.03e5T^{2} \)
53 \( 1 + 235.T + 1.48e5T^{2} \)
59 \( 1 + 19.1T + 2.05e5T^{2} \)
61 \( 1 - 713.T + 2.26e5T^{2} \)
67 \( 1 + 198.T + 3.00e5T^{2} \)
71 \( 1 - 76.3T + 3.57e5T^{2} \)
73 \( 1 - 984.T + 3.89e5T^{2} \)
79 \( 1 + 697.T + 4.93e5T^{2} \)
83 \( 1 - 388.T + 5.71e5T^{2} \)
89 \( 1 + 33.0T + 7.04e5T^{2} \)
97 \( 1 - 1.38e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.901091105129874075502151016465, −9.330517122929462443318468332601, −8.161767374240959976915358803518, −7.45388282200177387094071988213, −6.41191127550993805991526774520, −5.29899489057506918211344072311, −4.45858094389607168367687061669, −3.65520268371966552563177240300, −2.76063192984768842385388783131, −0.58416626045651210375072582158, 0.58416626045651210375072582158, 2.76063192984768842385388783131, 3.65520268371966552563177240300, 4.45858094389607168367687061669, 5.29899489057506918211344072311, 6.41191127550993805991526774520, 7.45388282200177387094071988213, 8.161767374240959976915358803518, 9.330517122929462443318468332601, 9.901091105129874075502151016465

Graph of the $Z$-function along the critical line