Properties

Label 2-693-1.1-c3-0-59
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.68·2-s − 5.17·4-s + 17.3·5-s + 7·7-s + 22.1·8-s − 29.1·10-s − 11·11-s − 70.1·13-s − 11.7·14-s + 4.17·16-s + 65.9·17-s − 105.·19-s − 89.8·20-s + 18.4·22-s − 96.1·23-s + 176.·25-s + 117.·26-s − 36.2·28-s − 196.·29-s − 25.2·31-s − 184.·32-s − 110.·34-s + 121.·35-s − 264.·37-s + 176.·38-s + 384.·40-s + 227.·41-s + ⋯
L(s)  = 1  − 0.594·2-s − 0.646·4-s + 1.55·5-s + 0.377·7-s + 0.978·8-s − 0.923·10-s − 0.301·11-s − 1.49·13-s − 0.224·14-s + 0.0653·16-s + 0.941·17-s − 1.26·19-s − 1.00·20-s + 0.179·22-s − 0.871·23-s + 1.41·25-s + 0.889·26-s − 0.244·28-s − 1.25·29-s − 0.146·31-s − 1.01·32-s − 0.559·34-s + 0.587·35-s − 1.17·37-s + 0.753·38-s + 1.52·40-s + 0.867·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 1.68T + 8T^{2} \)
5 \( 1 - 17.3T + 125T^{2} \)
13 \( 1 + 70.1T + 2.19e3T^{2} \)
17 \( 1 - 65.9T + 4.91e3T^{2} \)
19 \( 1 + 105.T + 6.85e3T^{2} \)
23 \( 1 + 96.1T + 1.21e4T^{2} \)
29 \( 1 + 196.T + 2.43e4T^{2} \)
31 \( 1 + 25.2T + 2.97e4T^{2} \)
37 \( 1 + 264.T + 5.06e4T^{2} \)
41 \( 1 - 227.T + 6.89e4T^{2} \)
43 \( 1 - 459.T + 7.95e4T^{2} \)
47 \( 1 + 6.15T + 1.03e5T^{2} \)
53 \( 1 + 152.T + 1.48e5T^{2} \)
59 \( 1 + 500.T + 2.05e5T^{2} \)
61 \( 1 - 644.T + 2.26e5T^{2} \)
67 \( 1 + 334.T + 3.00e5T^{2} \)
71 \( 1 + 93.6T + 3.57e5T^{2} \)
73 \( 1 + 39.5T + 3.89e5T^{2} \)
79 \( 1 + 494.T + 4.93e5T^{2} \)
83 \( 1 + 233.T + 5.71e5T^{2} \)
89 \( 1 + 1.06e3T + 7.04e5T^{2} \)
97 \( 1 + 390.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.666207873847931507737312993973, −9.004955972354833013283745464261, −7.998300352545490045654547787918, −7.19145686426055099432910237219, −5.84291775896621342857185169605, −5.23449175601027695277963585688, −4.19645427945810496431276267893, −2.45198678787125339842704750283, −1.56903001544265939535233418110, 0, 1.56903001544265939535233418110, 2.45198678787125339842704750283, 4.19645427945810496431276267893, 5.23449175601027695277963585688, 5.84291775896621342857185169605, 7.19145686426055099432910237219, 7.998300352545490045654547787918, 9.004955972354833013283745464261, 9.666207873847931507737312993973

Graph of the $Z$-function along the critical line