L(s) = 1 | + 3.85·2-s + 6.86·4-s + 5.82·5-s − 7·7-s − 4.38·8-s + 22.4·10-s + 11·11-s − 87.1·13-s − 26.9·14-s − 71.8·16-s − 119.·17-s + 23.9·19-s + 39.9·20-s + 42.4·22-s + 119.·23-s − 91.0·25-s − 335.·26-s − 48.0·28-s − 53.7·29-s − 69.0·31-s − 241.·32-s − 458.·34-s − 40.7·35-s + 28.6·37-s + 92.4·38-s − 25.5·40-s + 419.·41-s + ⋯ |
L(s) = 1 | + 1.36·2-s + 0.857·4-s + 0.521·5-s − 0.377·7-s − 0.193·8-s + 0.710·10-s + 0.301·11-s − 1.85·13-s − 0.515·14-s − 1.12·16-s − 1.69·17-s + 0.289·19-s + 0.447·20-s + 0.410·22-s + 1.08·23-s − 0.728·25-s − 2.53·26-s − 0.324·28-s − 0.344·29-s − 0.399·31-s − 1.33·32-s − 2.31·34-s − 0.197·35-s + 0.127·37-s + 0.394·38-s − 0.100·40-s + 1.59·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + 7T \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 - 3.85T + 8T^{2} \) |
| 5 | \( 1 - 5.82T + 125T^{2} \) |
| 13 | \( 1 + 87.1T + 2.19e3T^{2} \) |
| 17 | \( 1 + 119.T + 4.91e3T^{2} \) |
| 19 | \( 1 - 23.9T + 6.85e3T^{2} \) |
| 23 | \( 1 - 119.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 53.7T + 2.43e4T^{2} \) |
| 31 | \( 1 + 69.0T + 2.97e4T^{2} \) |
| 37 | \( 1 - 28.6T + 5.06e4T^{2} \) |
| 41 | \( 1 - 419.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 40.0T + 7.95e4T^{2} \) |
| 47 | \( 1 - 74.1T + 1.03e5T^{2} \) |
| 53 | \( 1 + 244.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 365.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 456.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 470.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 359.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 902.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 707.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 541.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 559.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.52e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.434962205148698556048222981426, −9.154414571279158860165307371854, −7.50865444588257204398384151781, −6.71006964457244754088354706528, −5.87298777569175173203450339659, −4.92921534708082799259662667549, −4.25405702155749001203578703234, −2.95955919119802067886140855965, −2.14289250247061410864579923680, 0,
2.14289250247061410864579923680, 2.95955919119802067886140855965, 4.25405702155749001203578703234, 4.92921534708082799259662667549, 5.87298777569175173203450339659, 6.71006964457244754088354706528, 7.50865444588257204398384151781, 9.154414571279158860165307371854, 9.434962205148698556048222981426