L(s) = 1 | + 4.93·2-s + 16.3·4-s − 14.7·5-s − 7·7-s + 41.1·8-s − 72.8·10-s + 11·11-s − 32.3·13-s − 34.5·14-s + 72.4·16-s + 45.2·17-s − 146.·19-s − 241.·20-s + 54.2·22-s − 153.·23-s + 93.2·25-s − 159.·26-s − 114.·28-s − 78.6·29-s + 106.·31-s + 27.8·32-s + 223.·34-s + 103.·35-s + 94.0·37-s − 723.·38-s − 608.·40-s − 417.·41-s + ⋯ |
L(s) = 1 | + 1.74·2-s + 2.04·4-s − 1.32·5-s − 0.377·7-s + 1.81·8-s − 2.30·10-s + 0.301·11-s − 0.689·13-s − 0.659·14-s + 1.13·16-s + 0.645·17-s − 1.76·19-s − 2.69·20-s + 0.525·22-s − 1.38·23-s + 0.746·25-s − 1.20·26-s − 0.772·28-s − 0.503·29-s + 0.614·31-s + 0.153·32-s + 1.12·34-s + 0.499·35-s + 0.418·37-s − 3.08·38-s − 2.40·40-s − 1.58·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + 7T \) |
| 11 | \( 1 - 11T \) |
good | 2 | \( 1 - 4.93T + 8T^{2} \) |
| 5 | \( 1 + 14.7T + 125T^{2} \) |
| 13 | \( 1 + 32.3T + 2.19e3T^{2} \) |
| 17 | \( 1 - 45.2T + 4.91e3T^{2} \) |
| 19 | \( 1 + 146.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 153.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 78.6T + 2.43e4T^{2} \) |
| 31 | \( 1 - 106.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 94.0T + 5.06e4T^{2} \) |
| 41 | \( 1 + 417.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 60.3T + 7.95e4T^{2} \) |
| 47 | \( 1 + 253.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 647.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 559.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 602.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 343.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 224.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.05e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 102.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 730.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 43.7T + 7.04e5T^{2} \) |
| 97 | \( 1 - 8.01T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.922937947377207526233750873146, −8.466593910122825758398513234142, −7.61136646804947767951822147942, −6.71968592032081167798559666218, −5.94469498295235112409156808700, −4.75369405838241035142402998274, −4.05592980098750222836333588517, −3.36161965989227747048016102165, −2.14555150567065961960015025302, 0,
2.14555150567065961960015025302, 3.36161965989227747048016102165, 4.05592980098750222836333588517, 4.75369405838241035142402998274, 5.94469498295235112409156808700, 6.71968592032081167798559666218, 7.61136646804947767951822147942, 8.466593910122825758398513234142, 9.922937947377207526233750873146