L(s) = 1 | + 3.50·2-s + 4.27·4-s − 15.3·5-s − 7·7-s − 13.0·8-s − 53.6·10-s − 11·11-s + 5.90·13-s − 24.5·14-s − 79.9·16-s + 73.2·17-s + 80.3·19-s − 65.4·20-s − 38.5·22-s + 190.·23-s + 109.·25-s + 20.7·26-s − 29.9·28-s + 285.·29-s + 85.3·31-s − 175.·32-s + 256.·34-s + 107.·35-s − 149.·37-s + 281.·38-s + 199.·40-s − 13.9·41-s + ⋯ |
L(s) = 1 | + 1.23·2-s + 0.534·4-s − 1.36·5-s − 0.377·7-s − 0.576·8-s − 1.69·10-s − 0.301·11-s + 0.126·13-s − 0.468·14-s − 1.24·16-s + 1.04·17-s + 0.970·19-s − 0.731·20-s − 0.373·22-s + 1.72·23-s + 0.874·25-s + 0.156·26-s − 0.201·28-s + 1.82·29-s + 0.494·31-s − 0.970·32-s + 1.29·34-s + 0.517·35-s − 0.662·37-s + 1.20·38-s + 0.789·40-s − 0.0530·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.434286352 |
L(21) |
≈ |
2.434286352 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 2 | 1−3.50T+8T2 |
| 5 | 1+15.3T+125T2 |
| 13 | 1−5.90T+2.19e3T2 |
| 17 | 1−73.2T+4.91e3T2 |
| 19 | 1−80.3T+6.85e3T2 |
| 23 | 1−190.T+1.21e4T2 |
| 29 | 1−285.T+2.43e4T2 |
| 31 | 1−85.3T+2.97e4T2 |
| 37 | 1+149.T+5.06e4T2 |
| 41 | 1+13.9T+6.89e4T2 |
| 43 | 1+148.T+7.95e4T2 |
| 47 | 1+94.7T+1.03e5T2 |
| 53 | 1+105.T+1.48e5T2 |
| 59 | 1+184.T+2.05e5T2 |
| 61 | 1+189.T+2.26e5T2 |
| 67 | 1+193.T+3.00e5T2 |
| 71 | 1+356.T+3.57e5T2 |
| 73 | 1−655.T+3.89e5T2 |
| 79 | 1−110.T+4.93e5T2 |
| 83 | 1−1.27e3T+5.71e5T2 |
| 89 | 1+255.T+7.04e5T2 |
| 97 | 1−372.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24022825879526835936040370793, −9.121663593155540472888652924189, −8.191935624637423795010025924167, −7.29288316017452578450057342191, −6.41105163973568419056448121556, −5.21988589815245406818198945664, −4.59160597174282663975689284017, −3.40861525127283422849689813249, −3.03748069737443641897987716967, −0.74723587190876114952230456649,
0.74723587190876114952230456649, 3.03748069737443641897987716967, 3.40861525127283422849689813249, 4.59160597174282663975689284017, 5.21988589815245406818198945664, 6.41105163973568419056448121556, 7.29288316017452578450057342191, 8.191935624637423795010025924167, 9.121663593155540472888652924189, 10.24022825879526835936040370793