L(s) = 1 | + 1.41·2-s + (0.707 + 0.707i)3-s + 2.00·4-s + 5-s + (1.00 + 1.00i)6-s + 2.41i·7-s + 2.82·8-s + 1.00i·9-s + 1.41·10-s + (−1.82 − 1.82i)11-s + (1.41 + 1.41i)12-s + 2.82·13-s + 3.41i·14-s + (0.707 + 0.707i)15-s + 4.00·16-s + (−5.53 − 5.53i)17-s + ⋯ |
L(s) = 1 | + 1.00·2-s + (0.408 + 0.408i)3-s + 1.00·4-s + 0.447·5-s + (0.408 + 0.408i)6-s + 0.912i·7-s + 1.00·8-s + 0.333i·9-s + 0.447·10-s + (−0.551 − 0.551i)11-s + (0.408 + 0.408i)12-s + 0.784·13-s + 0.912i·14-s + (0.182 + 0.182i)15-s + 1.00·16-s + (−1.34 − 1.34i)17-s + ⋯ |
Λ(s)=(=(696s/2ΓC(s)L(s)(0.828−0.560i)Λ(2−s)
Λ(s)=(=(696s/2ΓC(s+1/2)L(s)(0.828−0.560i)Λ(1−s)
Degree: |
2 |
Conductor: |
696
= 23⋅3⋅29
|
Sign: |
0.828−0.560i
|
Analytic conductor: |
5.55758 |
Root analytic conductor: |
2.35745 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ696(331,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 696, ( :1/2), 0.828−0.560i)
|
Particular Values
L(1) |
≈ |
3.25518+0.998296i |
L(21) |
≈ |
3.25518+0.998296i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−1.41T |
| 3 | 1+(−0.707−0.707i)T |
| 29 | 1+(2−5i)T |
good | 5 | 1−T+5T2 |
| 7 | 1−2.41iT−7T2 |
| 11 | 1+(1.82+1.82i)T+11iT2 |
| 13 | 1−2.82T+13T2 |
| 17 | 1+(5.53+5.53i)T+17iT2 |
| 19 | 1+(−1.70−1.70i)T+19iT2 |
| 23 | 1−4.58iT−23T2 |
| 31 | 1+(−3.58+3.58i)T−31iT2 |
| 37 | 1+(3.29+3.29i)T+37iT2 |
| 41 | 1+(−6.12+6.12i)T−41iT2 |
| 43 | 1+(1.94+1.94i)T+43iT2 |
| 47 | 1+(2.29+2.29i)T+47iT2 |
| 53 | 1+8.48iT−53T2 |
| 59 | 1+8.89T+59T2 |
| 61 | 1+(2.58−2.58i)T−61iT2 |
| 67 | 1−5.75iT−67T2 |
| 71 | 1−12.8T+71T2 |
| 73 | 1+(1.82−1.82i)T−73iT2 |
| 79 | 1+(0.828−0.828i)T−79iT2 |
| 83 | 1−2.34T+83T2 |
| 89 | 1+(8.24+8.24i)T+89iT2 |
| 97 | 1+(2.24−2.24i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78244991474135468363539010291, −9.649807690054865515726945748832, −8.897027305421876454582966870592, −7.893520491839913751749354681120, −6.82586769155836746850835733221, −5.70138218571883909827450228334, −5.26403638719014980775482782678, −3.98021033900875579890087531424, −2.94637533369019403479280709082, −2.02395862555363730847030694482,
1.56452491471711705802027108721, 2.66437081472724404089743735736, 3.94376458876010435572631386661, 4.67596716088768822728506767880, 6.09266880825976277238189038985, 6.60418209703328800452815853141, 7.63054040680991106252891650520, 8.383836637147653057980980354212, 9.696333877930266003926244942552, 10.62119802492323490696048588012