L(s) = 1 | − i·2-s + 2.44i·3-s − 4-s + (2.22 − 0.224i)5-s + 2.44·6-s − i·7-s + i·8-s − 2.99·9-s + (−0.224 − 2.22i)10-s − 4.89·11-s − 2.44i·12-s − 4.44i·13-s − 14-s + (0.550 + 5.44i)15-s + 16-s + 2i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.41i·3-s − 0.5·4-s + (0.994 − 0.100i)5-s + 0.999·6-s − 0.377i·7-s + 0.353i·8-s − 0.999·9-s + (−0.0710 − 0.703i)10-s − 1.47·11-s − 0.707i·12-s − 1.23i·13-s − 0.267·14-s + (0.142 + 1.40i)15-s + 0.250·16-s + 0.485i·17-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)(0.994−0.100i)Λ(2−s)
Λ(s)=(=(70s/2ΓC(s+1/2)L(s)(0.994−0.100i)Λ(1−s)
Degree: |
2 |
Conductor: |
70
= 2⋅5⋅7
|
Sign: |
0.994−0.100i
|
Analytic conductor: |
0.558952 |
Root analytic conductor: |
0.747631 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ70(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 70, ( :1/2), 0.994−0.100i)
|
Particular Values
L(1) |
≈ |
0.942687+0.0474944i |
L(21) |
≈ |
0.942687+0.0474944i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1+(−2.22+0.224i)T |
| 7 | 1+iT |
good | 3 | 1−2.44iT−3T2 |
| 11 | 1+4.89T+11T2 |
| 13 | 1+4.44iT−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+1.55T+19T2 |
| 23 | 1+2.89iT−23T2 |
| 29 | 1+6.89T+29T2 |
| 31 | 1−8.89T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+1.10T+41T2 |
| 43 | 1−0.898iT−43T2 |
| 47 | 1−8.89iT−47T2 |
| 53 | 1−10.8iT−53T2 |
| 59 | 1−1.55T+59T2 |
| 61 | 1−3.55T+61T2 |
| 67 | 1+8iT−67T2 |
| 71 | 1+1.10T+71T2 |
| 73 | 1+2.89iT−73T2 |
| 79 | 1+6.89T+79T2 |
| 83 | 1−2.44iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−15.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.80967854907105242526667714811, −13.50002272829615240033097414624, −12.69730178009787096880303935153, −10.73426123510157600035228413424, −10.43134582684158402341125059784, −9.522611812166983285514215208849, −8.163324242375110243183970953295, −5.69448156402581075408846634244, −4.61801799198574011265464084909, −2.90486681587310966934221475522,
2.20761612620777380177549525069, 5.29435469974098243385809056628, 6.44253967075169279419816373286, 7.41215864755701840767877718374, 8.648810880927592417393614859814, 9.972584520176235140764895497419, 11.66693394927099345644334706199, 13.01986328622609529127605007166, 13.45973863280713756712153726458, 14.44646370975234255480349180264