L(s) = 1 | + (1 − 1.73i)2-s + (−2.89 − 5.00i)3-s + (−1.99 − 3.46i)4-s + (−2.5 + 4.33i)5-s − 11.5·6-s + (−15.4 − 10.2i)7-s − 7.99·8-s + (−3.21 + 5.57i)9-s + (5 + 8.66i)10-s + (10.2 + 17.6i)11-s + (−11.5 + 20.0i)12-s − 53.1·13-s + (−33.1 + 16.5i)14-s + 28.9·15-s + (−8 + 13.8i)16-s + (−13.8 − 24.0i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.556 − 0.963i)3-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s − 0.786·6-s + (−0.834 − 0.550i)7-s − 0.353·8-s + (−0.119 + 0.206i)9-s + (0.158 + 0.273i)10-s + (0.280 + 0.485i)11-s + (−0.278 + 0.481i)12-s − 1.13·13-s + (−0.632 + 0.316i)14-s + 0.497·15-s + (−0.125 + 0.216i)16-s + (−0.197 − 0.342i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.00346i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.00346i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.00160137 - 0.923536i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00160137 - 0.923536i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + 1.73i)T \) |
| 5 | \( 1 + (2.5 - 4.33i)T \) |
| 7 | \( 1 + (15.4 + 10.2i)T \) |
good | 3 | \( 1 + (2.89 + 5.00i)T + (-13.5 + 23.3i)T^{2} \) |
| 11 | \( 1 + (-10.2 - 17.6i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 53.1T + 2.19e3T^{2} \) |
| 17 | \( 1 + (13.8 + 24.0i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-71.5 + 123. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-100. + 173. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 113.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-52.7 - 91.3i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-0.693 + 1.20i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 226.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 268.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (13.8 - 24.0i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (37.1 + 64.3i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (332. + 576. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (254. - 441. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-490. - 849. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 144.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (367. + 637. i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (73.0 - 126. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 712.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-303. + 525. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 771.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.33585852829796997319643677360, −12.50214739548963833430783949936, −11.71879321570564223189305359366, −10.49122771045833041961789014277, −9.332167921517704347151053935509, −7.20204642250059202803497832186, −6.61026142962725212377369955597, −4.72480482423197285902779222379, −2.79988302990728765627727589898, −0.58064216224983414772452059515,
3.54360304949152139130291387222, 5.00518063368955497705965504742, 5.97644566124971808684044561295, 7.62807872795419079366606841240, 9.185049343648409287992358982274, 10.05609632055212869343064055345, 11.60993832151310474638304203142, 12.51119346613984989543994438091, 13.76835347568955514204982002610, 15.11864936405982866265825247452