L(s) = 1 | + (0.940 − 1.05i)2-s + (−1.38 + 2.72i)3-s + (−0.229 − 1.98i)4-s + (−0.521 − 2.17i)5-s + (1.56 + 4.02i)6-s + (0.707 − 0.707i)7-s + (−2.31 − 1.62i)8-s + (−3.72 − 5.12i)9-s + (−2.78 − 1.49i)10-s + (−3.29 + 4.52i)11-s + (5.72 + 2.12i)12-s + (−0.466 + 2.94i)13-s + (−0.0814 − 1.41i)14-s + (6.64 + 1.59i)15-s + (−3.89 + 0.913i)16-s + (−0.336 + 0.171i)17-s + ⋯ |
L(s) = 1 | + (0.665 − 0.746i)2-s + (−0.800 + 1.57i)3-s + (−0.114 − 0.993i)4-s + (−0.233 − 0.972i)5-s + (0.640 + 1.64i)6-s + (0.267 − 0.267i)7-s + (−0.818 − 0.574i)8-s + (−1.24 − 1.70i)9-s + (−0.881 − 0.472i)10-s + (−0.992 + 1.36i)11-s + (1.65 + 0.614i)12-s + (−0.129 + 0.816i)13-s + (−0.0217 − 0.377i)14-s + (1.71 + 0.411i)15-s + (−0.973 + 0.228i)16-s + (−0.0817 + 0.0416i)17-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.802−0.596i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(−0.802−0.596i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.802−0.596i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(687,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), −0.802−0.596i)
|
Particular Values
L(1) |
≈ |
0.0792863+0.239687i |
L(21) |
≈ |
0.0792863+0.239687i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.940+1.05i)T |
| 5 | 1+(0.521+2.17i)T |
| 7 | 1+(−0.707+0.707i)T |
good | 3 | 1+(1.38−2.72i)T+(−1.76−2.42i)T2 |
| 11 | 1+(3.29−4.52i)T+(−3.39−10.4i)T2 |
| 13 | 1+(0.466−2.94i)T+(−12.3−4.01i)T2 |
| 17 | 1+(0.336−0.171i)T+(9.99−13.7i)T2 |
| 19 | 1+(1.65−5.08i)T+(−15.3−11.1i)T2 |
| 23 | 1+(0.403+2.54i)T+(−21.8+7.10i)T2 |
| 29 | 1+(4.85−1.57i)T+(23.4−17.0i)T2 |
| 31 | 1+(3.80+1.23i)T+(25.0+18.2i)T2 |
| 37 | 1+(9.90+1.56i)T+(35.1+11.4i)T2 |
| 41 | 1+(−7.26+5.28i)T+(12.6−38.9i)T2 |
| 43 | 1+(6.36+6.36i)T+43iT2 |
| 47 | 1+(−2.63−1.34i)T+(27.6+38.0i)T2 |
| 53 | 1+(−4.35−2.21i)T+(31.1+42.8i)T2 |
| 59 | 1+(−2.45+1.78i)T+(18.2−56.1i)T2 |
| 61 | 1+(−11.3−8.26i)T+(18.8+58.0i)T2 |
| 67 | 1+(2.52+4.96i)T+(−39.3+54.2i)T2 |
| 71 | 1+(1.25−0.407i)T+(57.4−41.7i)T2 |
| 73 | 1+(8.73−1.38i)T+(69.4−22.5i)T2 |
| 79 | 1+(−4.91−15.1i)T+(−63.9+46.4i)T2 |
| 83 | 1+(4.71−2.40i)T+(48.7−67.1i)T2 |
| 89 | 1+(2.60−3.58i)T+(−27.5−84.6i)T2 |
| 97 | 1+(−2.29+4.50i)T+(−57.0−78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.67904676079406391447464421340, −10.18254309304961783465496075445, −9.464127224623540853806268814874, −8.653293083104834903444650325794, −7.11639297824513531458061035580, −5.60242506057504972864171846401, −5.18827123226571703874782287549, −4.24647468709828200312522055357, −3.89341298450498206177232123366, −1.97126351926316539223384274807,
0.10892447123631394018583086052, 2.39095654950568373322288937464, 3.29585233256762810908054019052, 5.15622533767269610335104254531, 5.77550174734208546237964925304, 6.51811168827335091631832614229, 7.36869346078518977997906271286, 7.88070437173008213254290102287, 8.692744280382479299116263712013, 10.56569434630294132801713489612