L(s) = 1 | + (−1.39 − 0.207i)2-s + 1.47i·3-s + (1.91 + 0.579i)4-s + (0.305 − 2.06i)6-s + (0.819 + 2.51i)7-s + (−2.55 − 1.20i)8-s + 0.828·9-s − 2.79i·11-s + (−0.853 + 2.82i)12-s + 5.83·13-s + (−0.625 − 3.68i)14-s + (3.32 + 2.21i)16-s − 4.12·17-s + (−1.15 − 0.171i)18-s + 5.64·19-s + ⋯ |
L(s) = 1 | + (−0.989 − 0.146i)2-s + 0.850i·3-s + (0.957 + 0.289i)4-s + (0.124 − 0.841i)6-s + (0.309 + 0.950i)7-s + (−0.904 − 0.426i)8-s + 0.276·9-s − 0.843i·11-s + (−0.246 + 0.814i)12-s + 1.61·13-s + (−0.167 − 0.985i)14-s + (0.832 + 0.554i)16-s − 0.999·17-s + (−0.273 − 0.0404i)18-s + 1.29·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.428 - 0.903i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.428 - 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.956648 + 0.605193i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.956648 + 0.605193i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.207i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.819 - 2.51i)T \) |
good | 3 | \( 1 - 1.47iT - 3T^{2} \) |
| 11 | \( 1 + 2.79iT - 11T^{2} \) |
| 13 | \( 1 - 5.83T + 13T^{2} \) |
| 17 | \( 1 + 4.12T + 17T^{2} \) |
| 19 | \( 1 - 5.64T + 19T^{2} \) |
| 23 | \( 1 - 3.95T + 23T^{2} \) |
| 29 | \( 1 - 0.242T + 29T^{2} \) |
| 31 | \( 1 + 2.08T + 31T^{2} \) |
| 37 | \( 1 + 6.24iT - 37T^{2} \) |
| 41 | \( 1 - 4.12iT - 41T^{2} \) |
| 43 | \( 1 + 5.59T + 43T^{2} \) |
| 47 | \( 1 + 6.25iT - 47T^{2} \) |
| 53 | \( 1 - 12.2iT - 53T^{2} \) |
| 59 | \( 1 - 2.94T + 59T^{2} \) |
| 61 | \( 1 - 11.6iT - 61T^{2} \) |
| 67 | \( 1 + 7.43T + 67T^{2} \) |
| 71 | \( 1 - 7.23iT - 71T^{2} \) |
| 73 | \( 1 - 12.3T + 73T^{2} \) |
| 79 | \( 1 + 7.91iT - 79T^{2} \) |
| 83 | \( 1 - 1.47iT - 83T^{2} \) |
| 89 | \( 1 - 12.3iT - 89T^{2} \) |
| 97 | \( 1 + 8.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68976535789068925184729327825, −9.569685050221812886309928538032, −8.915074175209503955102226578016, −8.458495308305395819227792551131, −7.26402581775020274542667542926, −6.17397057577208615370539568174, −5.32349967220300895152008362452, −3.87150597547820960426650429505, −2.90522380321206627581038274368, −1.35271129022819255011565257173,
1.00094795237487868752861951671, 1.86250211906276519904125108829, 3.51149483454362139679992038527, 4.92931047170181578685883592667, 6.39584158576404653349201855549, 6.92359863107183634112080339120, 7.65748395449544807226883321888, 8.408444627696464130694416550781, 9.411888400437615387210353139423, 10.24506612595104613174278854834