L(s) = 1 | + (−0.866 − 1.5i)3-s + (0.209 + 2.63i)7-s + (−1.13 − 1.97i)11-s − 6.09·13-s + (−2.38 − 4.13i)17-s + (2.13 − 3.70i)19-s + (3.77 − 2.59i)21-s + (−0.447 + 0.774i)23-s − 5.19·27-s − 3.27·29-s + (2.13 + 3.70i)31-s + (−1.97 + 3.41i)33-s + (2.80 − 4.86i)37-s + (5.27 + 9.13i)39-s − 11.2·41-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)3-s + (0.0791 + 0.996i)7-s + (−0.342 − 0.594i)11-s − 1.68·13-s + (−0.579 − 1.00i)17-s + (0.490 − 0.849i)19-s + (0.823 − 0.566i)21-s + (−0.0932 + 0.161i)23-s − 1.00·27-s − 0.608·29-s + (0.383 + 0.664i)31-s + (−0.342 + 0.594i)33-s + (0.461 − 0.799i)37-s + (0.844 + 1.46i)39-s − 1.76·41-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.989+0.142i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(−0.989+0.142i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.989+0.142i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), −0.989+0.142i)
|
Particular Values
L(1) |
≈ |
0.0338750−0.474397i |
L(21) |
≈ |
0.0338750−0.474397i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 7 | 1+(−0.209−2.63i)T |
good | 3 | 1+(0.866+1.5i)T+(−1.5+2.59i)T2 |
| 11 | 1+(1.13+1.97i)T+(−5.5+9.52i)T2 |
| 13 | 1+6.09T+13T2 |
| 17 | 1+(2.38+4.13i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.13+3.70i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.447−0.774i)T+(−11.5−19.9i)T2 |
| 29 | 1+3.27T+29T2 |
| 31 | 1+(−2.13−3.70i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2.80+4.86i)T+(−18.5−32.0i)T2 |
| 41 | 1+11.2T+41T2 |
| 43 | 1+6.50T+43T2 |
| 47 | 1+(1.07−1.86i)T+(−23.5−40.7i)T2 |
| 53 | 1+(3.70+6.41i)T+(−26.5+45.8i)T2 |
| 59 | 1+(2.13+3.70i)T+(−29.5+51.0i)T2 |
| 61 | 1+(0.774−1.34i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.95−12.0i)T+(−33.5+58.0i)T2 |
| 71 | 1−10.5T+71T2 |
| 73 | 1+(1.07+1.86i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.137+0.238i)T+(−39.5−68.4i)T2 |
| 83 | 1−5.67T+83T2 |
| 89 | 1+(−3.5+6.06i)T+(−44.5−77.0i)T2 |
| 97 | 1+6.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.879969789478787647082630039523, −9.248116554998555694967777629158, −8.212097007057137199555553781953, −7.21887912982848804789734777525, −6.64528495449458619963439348184, −5.46994001724909168804647473981, −4.88897885618587086111051803425, −3.06303144955831308829779934307, −2.04912056122037259148078230545, −0.24770195952458898628909719282,
1.96944228998277801746996768337, 3.62245920364958077236720398207, 4.59633971808217535230569560533, 5.12381119562401342509828192461, 6.43230099121010075670292879776, 7.44982948776909452537465269471, 8.094472272121280566945831966690, 9.624135349851606824640857597018, 10.03288612646902664732071216852, 10.62169996536594050979740864095