L(s) = 1 | + (0.501 + 1.32i)2-s + (0.895 − 1.55i)3-s + (−1.49 + 1.32i)4-s + (2.49 + 0.405i)6-s + (0.644 − 2.56i)7-s + (−2.50 − 1.31i)8-s + (−0.103 − 0.179i)9-s + (3.66 + 2.11i)11-s + (0.717 + 3.50i)12-s − 2.98i·13-s + (3.71 − 0.434i)14-s + (0.480 − 3.97i)16-s + (1.92 + 1.10i)17-s + (0.184 − 0.226i)18-s + (−2.28 − 3.95i)19-s + ⋯ |
L(s) = 1 | + (0.354 + 0.934i)2-s + (0.516 − 0.895i)3-s + (−0.748 + 0.663i)4-s + (1.02 + 0.165i)6-s + (0.243 − 0.969i)7-s + (−0.885 − 0.464i)8-s + (−0.0344 − 0.0596i)9-s + (1.10 + 0.638i)11-s + (0.207 + 1.01i)12-s − 0.827i·13-s + (0.993 − 0.116i)14-s + (0.120 − 0.992i)16-s + (0.465 + 0.268i)17-s + (0.0435 − 0.0533i)18-s + (−0.523 − 0.907i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.12288 + 0.0872949i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.12288 + 0.0872949i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.501 - 1.32i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.644 + 2.56i)T \) |
good | 3 | \( 1 + (-0.895 + 1.55i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-3.66 - 2.11i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.98iT - 13T^{2} \) |
| 17 | \( 1 + (-1.92 - 1.10i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.28 + 3.95i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.78 + 1.02i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.42T + 29T^{2} \) |
| 31 | \( 1 + (-1.20 + 2.07i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.16 + 3.74i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 4.88iT - 41T^{2} \) |
| 43 | \( 1 - 12.3iT - 43T^{2} \) |
| 47 | \( 1 + (3.38 + 5.85i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.41 - 11.1i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.99 + 12.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.0195 + 0.0113i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.38 + 2.53i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 4.07iT - 71T^{2} \) |
| 73 | \( 1 + (-2.88 - 1.66i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.14 - 1.81i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 11.7T + 83T^{2} \) |
| 89 | \( 1 + (14.4 - 8.34i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 12.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31257041944142397859058887082, −9.362230510473369215018167816380, −8.287483932398258250211018982704, −7.79838941412977377794160563436, −6.89501959347543161258900324375, −6.44565097158546615312466984459, −4.95117665632687185184084917711, −4.15008657182431615689365663646, −2.88209644780421367917579606380, −1.14505573382865114000488085633,
1.55657833016569898114496574699, 2.93875391056247378422505244744, 3.79055084833694586101740780952, 4.62786508571742246746527241323, 5.68332248785223462161535932020, 6.65827654344685321124084259454, 8.613212008785825140754328955767, 8.743642790260261972329308608428, 9.691259108105234908746986589728, 10.31439175250312382751406875481