L(s) = 1 | + (0.501 + 1.32i)2-s + (0.895 − 1.55i)3-s + (−1.49 + 1.32i)4-s + (2.49 + 0.405i)6-s + (0.644 − 2.56i)7-s + (−2.50 − 1.31i)8-s + (−0.103 − 0.179i)9-s + (3.66 + 2.11i)11-s + (0.717 + 3.50i)12-s − 2.98i·13-s + (3.71 − 0.434i)14-s + (0.480 − 3.97i)16-s + (1.92 + 1.10i)17-s + (0.184 − 0.226i)18-s + (−2.28 − 3.95i)19-s + ⋯ |
L(s) = 1 | + (0.354 + 0.934i)2-s + (0.516 − 0.895i)3-s + (−0.748 + 0.663i)4-s + (1.02 + 0.165i)6-s + (0.243 − 0.969i)7-s + (−0.885 − 0.464i)8-s + (−0.0344 − 0.0596i)9-s + (1.10 + 0.638i)11-s + (0.207 + 1.01i)12-s − 0.827i·13-s + (0.993 − 0.116i)14-s + (0.120 − 0.992i)16-s + (0.465 + 0.268i)17-s + (0.0435 − 0.0533i)18-s + (−0.523 − 0.907i)19-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.996−0.0821i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(0.996−0.0821i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.996−0.0821i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), 0.996−0.0821i)
|
Particular Values
L(1) |
≈ |
2.12288+0.0872949i |
L(21) |
≈ |
2.12288+0.0872949i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.501−1.32i)T |
| 5 | 1 |
| 7 | 1+(−0.644+2.56i)T |
good | 3 | 1+(−0.895+1.55i)T+(−1.5−2.59i)T2 |
| 11 | 1+(−3.66−2.11i)T+(5.5+9.52i)T2 |
| 13 | 1+2.98iT−13T2 |
| 17 | 1+(−1.92−1.10i)T+(8.5+14.7i)T2 |
| 19 | 1+(2.28+3.95i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.78+1.02i)T+(11.5−19.9i)T2 |
| 29 | 1−6.42T+29T2 |
| 31 | 1+(−1.20+2.07i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.16+3.74i)T+(−18.5+32.0i)T2 |
| 41 | 1−4.88iT−41T2 |
| 43 | 1−12.3iT−43T2 |
| 47 | 1+(3.38+5.85i)T+(−23.5+40.7i)T2 |
| 53 | 1+(6.41−11.1i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−6.99+12.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.0195+0.0113i)T+(30.5−52.8i)T2 |
| 67 | 1+(4.38+2.53i)T+(33.5+58.0i)T2 |
| 71 | 1−4.07iT−71T2 |
| 73 | 1+(−2.88−1.66i)T+(36.5+63.2i)T2 |
| 79 | 1+(3.14−1.81i)T+(39.5−68.4i)T2 |
| 83 | 1+11.7T+83T2 |
| 89 | 1+(14.4−8.34i)T+(44.5−77.0i)T2 |
| 97 | 1−12.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31257041944142397859058887082, −9.362230510473369215018167816380, −8.287483932398258250211018982704, −7.79838941412977377794160563436, −6.89501959347543161258900324375, −6.44565097158546615312466984459, −4.95117665632687185184084917711, −4.15008657182431615689365663646, −2.88209644780421367917579606380, −1.14505573382865114000488085633,
1.55657833016569898114496574699, 2.93875391056247378422505244744, 3.79055084833694586101740780952, 4.62786508571742246746527241323, 5.68332248785223462161535932020, 6.65827654344685321124084259454, 8.613212008785825140754328955767, 8.743642790260261972329308608428, 9.691259108105234908746986589728, 10.31439175250312382751406875481