L(s) = 1 | + (−0.836 − 1.14i)2-s + (−1.51 + 2.62i)3-s + (−0.601 + 1.90i)4-s + (4.25 − 0.465i)6-s + (2.57 − 0.602i)7-s + (2.67 − 0.908i)8-s + (−3.08 − 5.33i)9-s + (1.03 + 0.598i)11-s + (−4.08 − 4.46i)12-s − 4.83i·13-s + (−2.84 − 2.43i)14-s + (−3.27 − 2.29i)16-s + (−2.20 − 1.27i)17-s + (−3.51 + 7.97i)18-s + (−0.711 − 1.23i)19-s + ⋯ |
L(s) = 1 | + (−0.591 − 0.806i)2-s + (−0.873 + 1.51i)3-s + (−0.300 + 0.953i)4-s + (1.73 − 0.190i)6-s + (0.973 − 0.227i)7-s + (0.946 − 0.321i)8-s + (−1.02 − 1.77i)9-s + (0.312 + 0.180i)11-s + (−1.18 − 1.28i)12-s − 1.34i·13-s + (−0.759 − 0.650i)14-s + (−0.819 − 0.573i)16-s + (−0.534 − 0.308i)17-s + (−0.827 + 1.88i)18-s + (−0.163 − 0.282i)19-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.890+0.455i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(0.890+0.455i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.890+0.455i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), 0.890+0.455i)
|
Particular Values
L(1) |
≈ |
0.792364−0.190766i |
L(21) |
≈ |
0.792364−0.190766i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.836+1.14i)T |
| 5 | 1 |
| 7 | 1+(−2.57+0.602i)T |
good | 3 | 1+(1.51−2.62i)T+(−1.5−2.59i)T2 |
| 11 | 1+(−1.03−0.598i)T+(5.5+9.52i)T2 |
| 13 | 1+4.83iT−13T2 |
| 17 | 1+(2.20+1.27i)T+(8.5+14.7i)T2 |
| 19 | 1+(0.711+1.23i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−5.02+2.90i)T+(11.5−19.9i)T2 |
| 29 | 1−0.774T+29T2 |
| 31 | 1+(−3.31+5.74i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−2.55−4.42i)T+(−18.5+32.0i)T2 |
| 41 | 1+7.46iT−41T2 |
| 43 | 1−1.38iT−43T2 |
| 47 | 1+(0.535+0.927i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.68+2.91i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.94−8.55i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−8.31+4.79i)T+(30.5−52.8i)T2 |
| 67 | 1+(−9.14−5.27i)T+(33.5+58.0i)T2 |
| 71 | 1−16.3iT−71T2 |
| 73 | 1+(0.0927+0.0535i)T+(36.5+63.2i)T2 |
| 79 | 1+(−9.32+5.38i)T+(39.5−68.4i)T2 |
| 83 | 1+15.8T+83T2 |
| 89 | 1+(3.41−1.97i)T+(44.5−77.0i)T2 |
| 97 | 1+8.71iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40210528331998702562922061893, −9.863279266647859488813551180964, −8.904847367369188795314248519680, −8.177271795593449647223613949268, −6.94101056625700683076648265758, −5.49391049114834537016936785505, −4.68273745736973960511899879060, −3.98460892553047401986061799485, −2.72468905740558807866741412921, −0.71528957953562981778827753616,
1.17778384430547960049771104980, 2.01260622243891480547895220090, 4.56406564564490900799819343384, 5.43334586465029872316603625734, 6.41162280951057939662421517434, 6.89028373267100292074836393485, 7.77808380768181141830520709699, 8.505130390455688697616747087020, 9.350509392177133406067427743510, 10.80914163934672621410838390612