L(s) = 1 | + (−0.836 − 1.14i)2-s + (−1.51 + 2.62i)3-s + (−0.601 + 1.90i)4-s + (4.25 − 0.465i)6-s + (2.57 − 0.602i)7-s + (2.67 − 0.908i)8-s + (−3.08 − 5.33i)9-s + (1.03 + 0.598i)11-s + (−4.08 − 4.46i)12-s − 4.83i·13-s + (−2.84 − 2.43i)14-s + (−3.27 − 2.29i)16-s + (−2.20 − 1.27i)17-s + (−3.51 + 7.97i)18-s + (−0.711 − 1.23i)19-s + ⋯ |
L(s) = 1 | + (−0.591 − 0.806i)2-s + (−0.873 + 1.51i)3-s + (−0.300 + 0.953i)4-s + (1.73 − 0.190i)6-s + (0.973 − 0.227i)7-s + (0.946 − 0.321i)8-s + (−1.02 − 1.77i)9-s + (0.312 + 0.180i)11-s + (−1.18 − 1.28i)12-s − 1.34i·13-s + (−0.759 − 0.650i)14-s + (−0.819 − 0.573i)16-s + (−0.534 − 0.308i)17-s + (−0.827 + 1.88i)18-s + (−0.163 − 0.282i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 + 0.455i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.890 + 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.792364 - 0.190766i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.792364 - 0.190766i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.836 + 1.14i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.57 + 0.602i)T \) |
good | 3 | \( 1 + (1.51 - 2.62i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-1.03 - 0.598i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.83iT - 13T^{2} \) |
| 17 | \( 1 + (2.20 + 1.27i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.711 + 1.23i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.02 + 2.90i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.774T + 29T^{2} \) |
| 31 | \( 1 + (-3.31 + 5.74i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.55 - 4.42i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 7.46iT - 41T^{2} \) |
| 43 | \( 1 - 1.38iT - 43T^{2} \) |
| 47 | \( 1 + (0.535 + 0.927i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.68 + 2.91i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.94 - 8.55i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.31 + 4.79i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.14 - 5.27i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 16.3iT - 71T^{2} \) |
| 73 | \( 1 + (0.0927 + 0.0535i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-9.32 + 5.38i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 15.8T + 83T^{2} \) |
| 89 | \( 1 + (3.41 - 1.97i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 8.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40210528331998702562922061893, −9.863279266647859488813551180964, −8.904847367369188795314248519680, −8.177271795593449647223613949268, −6.94101056625700683076648265758, −5.49391049114834537016936785505, −4.68273745736973960511899879060, −3.98460892553047401986061799485, −2.72468905740558807866741412921, −0.71528957953562981778827753616,
1.17778384430547960049771104980, 2.01260622243891480547895220090, 4.56406564564490900799819343384, 5.43334586465029872316603625734, 6.41162280951057939662421517434, 6.89028373267100292074836393485, 7.77808380768181141830520709699, 8.505130390455688697616747087020, 9.350509392177133406067427743510, 10.80914163934672621410838390612