L(s) = 1 | + (−0.569 + 1.29i)2-s + (1.51 + 2.62i)3-s + (−1.35 − 1.47i)4-s + (−4.25 + 0.465i)6-s + (−2.57 − 0.602i)7-s + (2.67 − 0.908i)8-s + (−3.08 + 5.33i)9-s + (−1.03 + 0.598i)11-s + (1.82 − 5.77i)12-s + 4.83i·13-s + (2.24 − 2.99i)14-s + (−0.349 + 3.98i)16-s + (−2.20 + 1.27i)17-s + (−5.15 − 7.02i)18-s + (0.711 − 1.23i)19-s + ⋯ |
L(s) = 1 | + (−0.402 + 0.915i)2-s + (0.873 + 1.51i)3-s + (−0.675 − 0.737i)4-s + (−1.73 + 0.190i)6-s + (−0.973 − 0.227i)7-s + (0.946 − 0.321i)8-s + (−1.02 + 1.77i)9-s + (−0.312 + 0.180i)11-s + (0.525 − 1.66i)12-s + 1.34i·13-s + (0.600 − 0.799i)14-s + (−0.0873 + 0.996i)16-s + (−0.534 + 0.308i)17-s + (−1.21 − 1.65i)18-s + (0.163 − 0.282i)19-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.614+0.788i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(−0.614+0.788i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.614+0.788i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(551,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), −0.614+0.788i)
|
Particular Values
L(1) |
≈ |
0.382022−0.782203i |
L(21) |
≈ |
0.382022−0.782203i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.569−1.29i)T |
| 5 | 1 |
| 7 | 1+(2.57+0.602i)T |
good | 3 | 1+(−1.51−2.62i)T+(−1.5+2.59i)T2 |
| 11 | 1+(1.03−0.598i)T+(5.5−9.52i)T2 |
| 13 | 1−4.83iT−13T2 |
| 17 | 1+(2.20−1.27i)T+(8.5−14.7i)T2 |
| 19 | 1+(−0.711+1.23i)T+(−9.5−16.4i)T2 |
| 23 | 1+(5.02+2.90i)T+(11.5+19.9i)T2 |
| 29 | 1−0.774T+29T2 |
| 31 | 1+(3.31+5.74i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−2.55+4.42i)T+(−18.5−32.0i)T2 |
| 41 | 1−7.46iT−41T2 |
| 43 | 1−1.38iT−43T2 |
| 47 | 1+(−0.535+0.927i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1.68−2.91i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−4.94−8.55i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−8.31−4.79i)T+(30.5+52.8i)T2 |
| 67 | 1+(9.14−5.27i)T+(33.5−58.0i)T2 |
| 71 | 1−16.3iT−71T2 |
| 73 | 1+(0.0927−0.0535i)T+(36.5−63.2i)T2 |
| 79 | 1+(9.32+5.38i)T+(39.5+68.4i)T2 |
| 83 | 1−15.8T+83T2 |
| 89 | 1+(3.41+1.97i)T+(44.5+77.0i)T2 |
| 97 | 1−8.71iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43265936340075645612917318602, −9.909710151926816804882544908888, −9.221198811517148732375754016325, −8.703700990271119237390897707321, −7.67662456641469550173178153635, −6.65166719918301299436218648955, −5.65439689843564083684802599268, −4.34896709510052637056794682111, −4.01758112990438524699708740074, −2.45218836886539329658567164860,
0.44935652578146817318926862882, 1.92434191703245735333548079448, 2.91825385688003622340033198172, 3.56836554748383799996661404245, 5.46793762563879348059297819629, 6.63329938220580356415099973208, 7.57164380458885044289857793900, 8.198752302041021999809221402427, 8.960899844930509936014989385568, 9.805834504073095492155394597772