L(s) = 1 | + 3·9-s + 4·11-s − 12·29-s − 4·31-s + 20·41-s + 13·49-s − 16·59-s − 14·61-s + 32·71-s + 8·79-s + 9·81-s + 26·89-s + 12·99-s + 6·101-s + 18·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 20·169-s + 173-s + ⋯ |
L(s) = 1 | + 9-s + 1.20·11-s − 2.22·29-s − 0.718·31-s + 3.12·41-s + 13/7·49-s − 2.08·59-s − 1.79·61-s + 3.79·71-s + 0.900·79-s + 81-s + 2.75·89-s + 1.20·99-s + 0.597·101-s + 1.72·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.53·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=((28⋅58⋅74)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅58⋅74)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅58⋅74
|
Sign: |
1
|
Analytic conductor: |
976.114 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅58⋅74, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.855404530 |
L(21) |
≈ |
3.855404530 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C22 | 1−13T2+p2T4 |
good | 3 | C2×C22 | (1−pT2)2(1+pT2+p2T4) |
| 11 | C22 | (1−2T−7T2−2pT3+p2T4)2 |
| 13 | C2 | (1−4T+pT2)2(1+4T+pT2)2 |
| 17 | C22×C22 | (1−8T+47T2−8pT3+p2T4)(1+8T+47T2+8pT3+p2T4) |
| 19 | C22 | (1−pT2+p2T4)2 |
| 23 | C23 | 1−35T2+696T4−35p2T6+p4T8 |
| 29 | C2 | (1+3T+pT2)4 |
| 31 | C22 | (1+2T−27T2+2pT3+p2T4)2 |
| 37 | C23 | 1+10T2−1269T4+10p2T6+p4T8 |
| 41 | C2 | (1−5T+pT2)4 |
| 43 | C22 | (1−85T2+p2T4)2 |
| 47 | C23 | 1+30T2−1309T4+30p2T6+p4T8 |
| 53 | C22×C22 | (1−14T+143T2−14pT3+p2T4)(1+14T+143T2+14pT3+p2T4) |
| 59 | C22 | (1+8T+5T2+8pT3+p2T4)2 |
| 61 | C22 | (1+7T−12T2+7pT3+p2T4)2 |
| 67 | C23 | 1+125T2+11136T4+125p2T6+p4T8 |
| 71 | C2 | (1−8T+pT2)4 |
| 73 | C23 | 1−50T2−2829T4−50p2T6+p4T8 |
| 79 | C2 | (1−17T+pT2)2(1+13T+pT2)2 |
| 83 | C22 | (1−165T2+p2T4)2 |
| 89 | C22 | (1−13T+80T2−13pT3+p2T4)2 |
| 97 | C22 | (1−94T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.63793255811454605600635851568, −7.31817762504316894269345615549, −7.17221391813796075269955755591, −6.71159370016484315171196704011, −6.70824588255331453991686156353, −6.18295792692781301525212610270, −6.17608890009838146258827061146, −5.88896691527138101467521251661, −5.84711342882042746286338130168, −5.18872742206798954139342115549, −5.18314219591605660247033744968, −4.87661561592478920467818965468, −4.59818711338232673591791562115, −4.15013238338767560023104257017, −4.06916457450381108752699357260, −3.78097153947895385409843541218, −3.72783207606035734724301947734, −3.11553387377460623112050030319, −3.10169379256012402887933854753, −2.37389021079181415499955452139, −2.21874116559189075748288815535, −1.72196293071766099245710907694, −1.70756452577681252597114183710, −0.825344116128527881505054229628, −0.71750846692866205821574959380,
0.71750846692866205821574959380, 0.825344116128527881505054229628, 1.70756452577681252597114183710, 1.72196293071766099245710907694, 2.21874116559189075748288815535, 2.37389021079181415499955452139, 3.10169379256012402887933854753, 3.11553387377460623112050030319, 3.72783207606035734724301947734, 3.78097153947895385409843541218, 4.06916457450381108752699357260, 4.15013238338767560023104257017, 4.59818711338232673591791562115, 4.87661561592478920467818965468, 5.18314219591605660247033744968, 5.18872742206798954139342115549, 5.84711342882042746286338130168, 5.88896691527138101467521251661, 6.17608890009838146258827061146, 6.18295792692781301525212610270, 6.70824588255331453991686156353, 6.71159370016484315171196704011, 7.17221391813796075269955755591, 7.31817762504316894269345615549, 7.63793255811454605600635851568