Properties

Label 2-700-140.59-c1-0-22
Degree $2$
Conductor $700$
Sign $-0.389 - 0.920i$
Analytic cond. $5.58952$
Root an. cond. $2.36421$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.366 + 1.36i)2-s + (1.5 + 0.866i)3-s + (−1.73 − i)4-s + (−1.73 + 1.73i)6-s + (2 + 1.73i)7-s + (2 − 1.99i)8-s + (0.866 + 0.5i)11-s + (−1.73 − 3i)12-s + 3.46·13-s + (−3.09 + 2.09i)14-s + (1.99 + 3.46i)16-s + (−0.866 + 1.5i)17-s + (2.59 + 4.5i)19-s + (1.50 + 4.33i)21-s + (−1 + 0.999i)22-s + (0.5 + 0.866i)23-s + ⋯
L(s)  = 1  + (−0.258 + 0.965i)2-s + (0.866 + 0.499i)3-s + (−0.866 − 0.5i)4-s + (−0.707 + 0.707i)6-s + (0.755 + 0.654i)7-s + (0.707 − 0.707i)8-s + (0.261 + 0.150i)11-s + (−0.499 − 0.866i)12-s + 0.960·13-s + (−0.827 + 0.560i)14-s + (0.499 + 0.866i)16-s + (−0.210 + 0.363i)17-s + (0.596 + 1.03i)19-s + (0.327 + 0.944i)21-s + (−0.213 + 0.213i)22-s + (0.104 + 0.180i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $-0.389 - 0.920i$
Analytic conductor: \(5.58952\)
Root analytic conductor: \(2.36421\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{700} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :1/2),\ -0.389 - 0.920i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.985908 + 1.48768i\)
\(L(\frac12)\) \(\approx\) \(0.985908 + 1.48768i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.366 - 1.36i)T \)
5 \( 1 \)
7 \( 1 + (-2 - 1.73i)T \)
good3 \( 1 + (-1.5 - 0.866i)T + (1.5 + 2.59i)T^{2} \)
11 \( 1 + (-0.866 - 0.5i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 - 3.46T + 13T^{2} \)
17 \( 1 + (0.866 - 1.5i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.59 - 4.5i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 + (0.866 - 1.5i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (2.59 - 1.5i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 - 3.46iT - 41T^{2} \)
43 \( 1 + 2T + 43T^{2} \)
47 \( 1 + (-7.5 + 4.33i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.866 - 0.5i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-2.59 + 4.5i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4.5 - 2.59i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.5 + 2.59i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 14iT - 71T^{2} \)
73 \( 1 + (4.33 - 7.5i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (7.79 - 4.5i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + 13.8iT - 83T^{2} \)
89 \( 1 + (13.5 - 7.79i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 - 17.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39450376470148303005216250693, −9.522606076433167199569821060406, −8.784390268790069002135213989887, −8.329238989130423596610684774755, −7.45856296287991111435719889427, −6.21675500437940924871750369188, −5.47367602337224744985920401331, −4.29793959054472569820814567109, −3.40627642382740140959326295056, −1.63615869036582801559625912839, 1.08973939949667980379347666164, 2.22036206220545976712334506146, 3.32184001676576729709230177566, 4.30404233087412887125534308268, 5.42407913160834540128763876919, 7.11173847610861189008707184930, 7.74538544110410122402442366655, 8.690398869103533851808974031846, 9.088509394964883773528698274024, 10.29810953477229359713692446140

Graph of the $Z$-function along the critical line