Properties

Label 2-700-140.59-c1-0-22
Degree 22
Conductor 700700
Sign 0.3890.920i-0.389 - 0.920i
Analytic cond. 5.589525.58952
Root an. cond. 2.364212.36421
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.366 + 1.36i)2-s + (1.5 + 0.866i)3-s + (−1.73 − i)4-s + (−1.73 + 1.73i)6-s + (2 + 1.73i)7-s + (2 − 1.99i)8-s + (0.866 + 0.5i)11-s + (−1.73 − 3i)12-s + 3.46·13-s + (−3.09 + 2.09i)14-s + (1.99 + 3.46i)16-s + (−0.866 + 1.5i)17-s + (2.59 + 4.5i)19-s + (1.50 + 4.33i)21-s + (−1 + 0.999i)22-s + (0.5 + 0.866i)23-s + ⋯
L(s)  = 1  + (−0.258 + 0.965i)2-s + (0.866 + 0.499i)3-s + (−0.866 − 0.5i)4-s + (−0.707 + 0.707i)6-s + (0.755 + 0.654i)7-s + (0.707 − 0.707i)8-s + (0.261 + 0.150i)11-s + (−0.499 − 0.866i)12-s + 0.960·13-s + (−0.827 + 0.560i)14-s + (0.499 + 0.866i)16-s + (−0.210 + 0.363i)17-s + (0.596 + 1.03i)19-s + (0.327 + 0.944i)21-s + (−0.213 + 0.213i)22-s + (0.104 + 0.180i)23-s + ⋯

Functional equation

Λ(s)=(700s/2ΓC(s)L(s)=((0.3890.920i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(700s/2ΓC(s+1/2)L(s)=((0.3890.920i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 700700    =    225272^{2} \cdot 5^{2} \cdot 7
Sign: 0.3890.920i-0.389 - 0.920i
Analytic conductor: 5.589525.58952
Root analytic conductor: 2.364212.36421
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ700(199,)\chi_{700} (199, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 700, ( :1/2), 0.3890.920i)(2,\ 700,\ (\ :1/2),\ -0.389 - 0.920i)

Particular Values

L(1)L(1) \approx 0.985908+1.48768i0.985908 + 1.48768i
L(12)L(\frac12) \approx 0.985908+1.48768i0.985908 + 1.48768i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.3661.36i)T 1 + (0.366 - 1.36i)T
5 1 1
7 1+(21.73i)T 1 + (-2 - 1.73i)T
good3 1+(1.50.866i)T+(1.5+2.59i)T2 1 + (-1.5 - 0.866i)T + (1.5 + 2.59i)T^{2}
11 1+(0.8660.5i)T+(5.5+9.52i)T2 1 + (-0.866 - 0.5i)T + (5.5 + 9.52i)T^{2}
13 13.46T+13T2 1 - 3.46T + 13T^{2}
17 1+(0.8661.5i)T+(8.514.7i)T2 1 + (0.866 - 1.5i)T + (-8.5 - 14.7i)T^{2}
19 1+(2.594.5i)T+(9.5+16.4i)T2 1 + (-2.59 - 4.5i)T + (-9.5 + 16.4i)T^{2}
23 1+(0.50.866i)T+(11.5+19.9i)T2 1 + (-0.5 - 0.866i)T + (-11.5 + 19.9i)T^{2}
29 1+4T+29T2 1 + 4T + 29T^{2}
31 1+(0.8661.5i)T+(15.526.8i)T2 1 + (0.866 - 1.5i)T + (-15.5 - 26.8i)T^{2}
37 1+(2.591.5i)T+(18.532.0i)T2 1 + (2.59 - 1.5i)T + (18.5 - 32.0i)T^{2}
41 13.46iT41T2 1 - 3.46iT - 41T^{2}
43 1+2T+43T2 1 + 2T + 43T^{2}
47 1+(7.5+4.33i)T+(23.540.7i)T2 1 + (-7.5 + 4.33i)T + (23.5 - 40.7i)T^{2}
53 1+(0.8660.5i)T+(26.5+45.8i)T2 1 + (-0.866 - 0.5i)T + (26.5 + 45.8i)T^{2}
59 1+(2.59+4.5i)T+(29.551.0i)T2 1 + (-2.59 + 4.5i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.52.59i)T+(30.552.8i)T2 1 + (4.5 - 2.59i)T + (30.5 - 52.8i)T^{2}
67 1+(1.5+2.59i)T+(33.558.0i)T2 1 + (-1.5 + 2.59i)T + (-33.5 - 58.0i)T^{2}
71 1+14iT71T2 1 + 14iT - 71T^{2}
73 1+(4.337.5i)T+(36.563.2i)T2 1 + (4.33 - 7.5i)T + (-36.5 - 63.2i)T^{2}
79 1+(7.794.5i)T+(39.568.4i)T2 1 + (7.79 - 4.5i)T + (39.5 - 68.4i)T^{2}
83 1+13.8iT83T2 1 + 13.8iT - 83T^{2}
89 1+(13.57.79i)T+(44.577.0i)T2 1 + (13.5 - 7.79i)T + (44.5 - 77.0i)T^{2}
97 117.3T+97T2 1 - 17.3T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.39450376470148303005216250693, −9.522606076433167199569821060406, −8.784390268790069002135213989887, −8.329238989130423596610684774755, −7.45856296287991111435719889427, −6.21675500437940924871750369188, −5.47367602337224744985920401331, −4.29793959054472569820814567109, −3.40627642382740140959326295056, −1.63615869036582801559625912839, 1.08973939949667980379347666164, 2.22036206220545976712334506146, 3.32184001676576729709230177566, 4.30404233087412887125534308268, 5.42407913160834540128763876919, 7.11173847610861189008707184930, 7.74538544110410122402442366655, 8.690398869103533851808974031846, 9.088509394964883773528698274024, 10.29810953477229359713692446140

Graph of the ZZ-function along the critical line