L(s) = 1 | + (−0.366 + 1.36i)2-s + (1.5 + 0.866i)3-s + (−1.73 − i)4-s + (−1.73 + 1.73i)6-s + (2 + 1.73i)7-s + (2 − 1.99i)8-s + (0.866 + 0.5i)11-s + (−1.73 − 3i)12-s + 3.46·13-s + (−3.09 + 2.09i)14-s + (1.99 + 3.46i)16-s + (−0.866 + 1.5i)17-s + (2.59 + 4.5i)19-s + (1.50 + 4.33i)21-s + (−1 + 0.999i)22-s + (0.5 + 0.866i)23-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (0.866 + 0.499i)3-s + (−0.866 − 0.5i)4-s + (−0.707 + 0.707i)6-s + (0.755 + 0.654i)7-s + (0.707 − 0.707i)8-s + (0.261 + 0.150i)11-s + (−0.499 − 0.866i)12-s + 0.960·13-s + (−0.827 + 0.560i)14-s + (0.499 + 0.866i)16-s + (−0.210 + 0.363i)17-s + (0.596 + 1.03i)19-s + (0.327 + 0.944i)21-s + (−0.213 + 0.213i)22-s + (0.104 + 0.180i)23-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(−0.389−0.920i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(−0.389−0.920i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
−0.389−0.920i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), −0.389−0.920i)
|
Particular Values
L(1) |
≈ |
0.985908+1.48768i |
L(21) |
≈ |
0.985908+1.48768i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366−1.36i)T |
| 5 | 1 |
| 7 | 1+(−2−1.73i)T |
good | 3 | 1+(−1.5−0.866i)T+(1.5+2.59i)T2 |
| 11 | 1+(−0.866−0.5i)T+(5.5+9.52i)T2 |
| 13 | 1−3.46T+13T2 |
| 17 | 1+(0.866−1.5i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.59−4.5i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.5−0.866i)T+(−11.5+19.9i)T2 |
| 29 | 1+4T+29T2 |
| 31 | 1+(0.866−1.5i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.59−1.5i)T+(18.5−32.0i)T2 |
| 41 | 1−3.46iT−41T2 |
| 43 | 1+2T+43T2 |
| 47 | 1+(−7.5+4.33i)T+(23.5−40.7i)T2 |
| 53 | 1+(−0.866−0.5i)T+(26.5+45.8i)T2 |
| 59 | 1+(−2.59+4.5i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.5−2.59i)T+(30.5−52.8i)T2 |
| 67 | 1+(−1.5+2.59i)T+(−33.5−58.0i)T2 |
| 71 | 1+14iT−71T2 |
| 73 | 1+(4.33−7.5i)T+(−36.5−63.2i)T2 |
| 79 | 1+(7.79−4.5i)T+(39.5−68.4i)T2 |
| 83 | 1+13.8iT−83T2 |
| 89 | 1+(13.5−7.79i)T+(44.5−77.0i)T2 |
| 97 | 1−17.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39450376470148303005216250693, −9.522606076433167199569821060406, −8.784390268790069002135213989887, −8.329238989130423596610684774755, −7.45856296287991111435719889427, −6.21675500437940924871750369188, −5.47367602337224744985920401331, −4.29793959054472569820814567109, −3.40627642382740140959326295056, −1.63615869036582801559625912839,
1.08973939949667980379347666164, 2.22036206220545976712334506146, 3.32184001676576729709230177566, 4.30404233087412887125534308268, 5.42407913160834540128763876919, 7.11173847610861189008707184930, 7.74538544110410122402442366655, 8.690398869103533851808974031846, 9.088509394964883773528698274024, 10.29810953477229359713692446140