L(s) = 1 | + (−0.366 + 1.36i)2-s + (1.5 + 0.866i)3-s + (−1.73 − i)4-s + (−1.73 + 1.73i)6-s + (2 + 1.73i)7-s + (2 − 1.99i)8-s + (0.866 + 0.5i)11-s + (−1.73 − 3i)12-s + 3.46·13-s + (−3.09 + 2.09i)14-s + (1.99 + 3.46i)16-s + (−0.866 + 1.5i)17-s + (2.59 + 4.5i)19-s + (1.50 + 4.33i)21-s + (−1 + 0.999i)22-s + (0.5 + 0.866i)23-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (0.866 + 0.499i)3-s + (−0.866 − 0.5i)4-s + (−0.707 + 0.707i)6-s + (0.755 + 0.654i)7-s + (0.707 − 0.707i)8-s + (0.261 + 0.150i)11-s + (−0.499 − 0.866i)12-s + 0.960·13-s + (−0.827 + 0.560i)14-s + (0.499 + 0.866i)16-s + (−0.210 + 0.363i)17-s + (0.596 + 1.03i)19-s + (0.327 + 0.944i)21-s + (−0.213 + 0.213i)22-s + (0.104 + 0.180i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.389 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.985908 + 1.48768i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.985908 + 1.48768i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.366 - 1.36i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2 - 1.73i)T \) |
good | 3 | \( 1 + (-1.5 - 0.866i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.46T + 13T^{2} \) |
| 17 | \( 1 + (0.866 - 1.5i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.59 - 4.5i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (0.866 - 1.5i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.59 - 1.5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 3.46iT - 41T^{2} \) |
| 43 | \( 1 + 2T + 43T^{2} \) |
| 47 | \( 1 + (-7.5 + 4.33i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.866 - 0.5i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.59 + 4.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.5 - 2.59i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 + 2.59i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 14iT - 71T^{2} \) |
| 73 | \( 1 + (4.33 - 7.5i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.79 - 4.5i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (13.5 - 7.79i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 17.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39450376470148303005216250693, −9.522606076433167199569821060406, −8.784390268790069002135213989887, −8.329238989130423596610684774755, −7.45856296287991111435719889427, −6.21675500437940924871750369188, −5.47367602337224744985920401331, −4.29793959054472569820814567109, −3.40627642382740140959326295056, −1.63615869036582801559625912839,
1.08973939949667980379347666164, 2.22036206220545976712334506146, 3.32184001676576729709230177566, 4.30404233087412887125534308268, 5.42407913160834540128763876919, 7.11173847610861189008707184930, 7.74538544110410122402442366655, 8.690398869103533851808974031846, 9.088509394964883773528698274024, 10.29810953477229359713692446140