L(s) = 1 | + (−0.626 + 1.26i)2-s + (−2.59 − 1.49i)3-s + (−1.21 − 1.58i)4-s + (3.52 − 2.35i)6-s + (−1.65 + 2.06i)7-s + (2.77 − 0.546i)8-s + (2.99 + 5.18i)9-s + (−1.93 − 1.11i)11-s + (0.774 + 5.94i)12-s − 3.17·13-s + (−1.57 − 3.39i)14-s + (−1.04 + 3.86i)16-s + (−1.72 + 2.98i)17-s + (−8.45 + 0.548i)18-s + (−1.02 − 1.77i)19-s + ⋯ |
L(s) = 1 | + (−0.442 + 0.896i)2-s + (−1.49 − 0.865i)3-s + (−0.607 − 0.794i)4-s + (1.43 − 0.960i)6-s + (−0.627 + 0.778i)7-s + (0.981 − 0.193i)8-s + (0.998 + 1.72i)9-s + (−0.584 − 0.337i)11-s + (0.223 + 1.71i)12-s − 0.879·13-s + (−0.420 − 0.907i)14-s + (−0.261 + 0.965i)16-s + (−0.417 + 0.723i)17-s + (−1.99 + 0.129i)18-s + (−0.235 − 0.407i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0422i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0422i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.415286 + 0.00877363i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.415286 + 0.00877363i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.626 - 1.26i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (1.65 - 2.06i)T \) |
good | 3 | \( 1 + (2.59 + 1.49i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (1.93 + 1.11i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.17T + 13T^{2} \) |
| 17 | \( 1 + (1.72 - 2.98i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.02 + 1.77i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.33 + 2.30i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.38T + 29T^{2} \) |
| 31 | \( 1 + (2.44 - 4.23i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-9.69 + 5.59i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 1.46iT - 41T^{2} \) |
| 43 | \( 1 - 9.95T + 43T^{2} \) |
| 47 | \( 1 + (-5.30 + 3.06i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.03 + 2.32i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.55 + 6.16i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.19 - 1.26i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0263 - 0.0456i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.212iT - 71T^{2} \) |
| 73 | \( 1 + (-7.43 + 12.8i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.399 - 0.230i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 10.9iT - 83T^{2} \) |
| 89 | \( 1 + (6.07 - 3.51i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 0.185T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53764919738803387288431796762, −9.584400655903988648186587951788, −8.531133992164955848602822345835, −7.62159417974508884694703711678, −6.73497348890372261878931692576, −6.13907019087926746625863759254, −5.44886037164685599224514295602, −4.56479923498339720794524765511, −2.28519460728039652710812137784, −0.53687160210253421575352785457,
0.68514306585376320189968664801, 2.74541968016351454133374620769, 4.16560738652823021347041127412, 4.64520098991671369582230835574, 5.78640755082195305105493754888, 6.94720939401191949737417110289, 7.81167706398649020387945560564, 9.359709516807034578981922251015, 9.841788488788571417293536812449, 10.45935036050292060910411530143