L(s) = 1 | + (−0.626 + 1.26i)2-s + (−2.59 − 1.49i)3-s + (−1.21 − 1.58i)4-s + (3.52 − 2.35i)6-s + (−1.65 + 2.06i)7-s + (2.77 − 0.546i)8-s + (2.99 + 5.18i)9-s + (−1.93 − 1.11i)11-s + (0.774 + 5.94i)12-s − 3.17·13-s + (−1.57 − 3.39i)14-s + (−1.04 + 3.86i)16-s + (−1.72 + 2.98i)17-s + (−8.45 + 0.548i)18-s + (−1.02 − 1.77i)19-s + ⋯ |
L(s) = 1 | + (−0.442 + 0.896i)2-s + (−1.49 − 0.865i)3-s + (−0.607 − 0.794i)4-s + (1.43 − 0.960i)6-s + (−0.627 + 0.778i)7-s + (0.981 − 0.193i)8-s + (0.998 + 1.72i)9-s + (−0.584 − 0.337i)11-s + (0.223 + 1.71i)12-s − 0.879·13-s + (−0.420 − 0.907i)14-s + (−0.261 + 0.965i)16-s + (−0.417 + 0.723i)17-s + (−1.99 + 0.129i)18-s + (−0.235 − 0.407i)19-s + ⋯ |
Λ(s)=(=(700s/2ΓC(s)L(s)(0.999−0.0422i)Λ(2−s)
Λ(s)=(=(700s/2ΓC(s+1/2)L(s)(0.999−0.0422i)Λ(1−s)
Degree: |
2 |
Conductor: |
700
= 22⋅52⋅7
|
Sign: |
0.999−0.0422i
|
Analytic conductor: |
5.58952 |
Root analytic conductor: |
2.36421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ700(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 700, ( :1/2), 0.999−0.0422i)
|
Particular Values
L(1) |
≈ |
0.415286+0.00877363i |
L(21) |
≈ |
0.415286+0.00877363i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.626−1.26i)T |
| 5 | 1 |
| 7 | 1+(1.65−2.06i)T |
good | 3 | 1+(2.59+1.49i)T+(1.5+2.59i)T2 |
| 11 | 1+(1.93+1.11i)T+(5.5+9.52i)T2 |
| 13 | 1+3.17T+13T2 |
| 17 | 1+(1.72−2.98i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.02+1.77i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.33+2.30i)T+(−11.5+19.9i)T2 |
| 29 | 1−7.38T+29T2 |
| 31 | 1+(2.44−4.23i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−9.69+5.59i)T+(18.5−32.0i)T2 |
| 41 | 1−1.46iT−41T2 |
| 43 | 1−9.95T+43T2 |
| 47 | 1+(−5.30+3.06i)T+(23.5−40.7i)T2 |
| 53 | 1+(4.03+2.32i)T+(26.5+45.8i)T2 |
| 59 | 1+(−3.55+6.16i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.19−1.26i)T+(30.5−52.8i)T2 |
| 67 | 1+(0.0263−0.0456i)T+(−33.5−58.0i)T2 |
| 71 | 1+0.212iT−71T2 |
| 73 | 1+(−7.43+12.8i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.399−0.230i)T+(39.5−68.4i)T2 |
| 83 | 1−10.9iT−83T2 |
| 89 | 1+(6.07−3.51i)T+(44.5−77.0i)T2 |
| 97 | 1+0.185T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53764919738803387288431796762, −9.584400655903988648186587951788, −8.531133992164955848602822345835, −7.62159417974508884694703711678, −6.73497348890372261878931692576, −6.13907019087926746625863759254, −5.44886037164685599224514295602, −4.56479923498339720794524765511, −2.28519460728039652710812137784, −0.53687160210253421575352785457,
0.68514306585376320189968664801, 2.74541968016351454133374620769, 4.16560738652823021347041127412, 4.64520098991671369582230835574, 5.78640755082195305105493754888, 6.94720939401191949737417110289, 7.81167706398649020387945560564, 9.359709516807034578981922251015, 9.841788488788571417293536812449, 10.45935036050292060910411530143