L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.653 + 0.175i)5-s + (−3.90 + 1.04i)7-s + (−0.707 + 0.707i)8-s + (−0.585 − 0.338i)10-s + (0.502 − 0.502i)11-s + (−2.29 + 2.77i)13-s + (−3.49 − 2.01i)14-s − 1.00·16-s + (−3.24 − 5.61i)17-s + (−0.253 − 0.0679i)19-s + (−0.175 − 0.653i)20-s + 0.710·22-s + (−0.860 − 1.49i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.292 + 0.0782i)5-s + (−1.47 + 0.394i)7-s + (−0.250 + 0.250i)8-s + (−0.185 − 0.106i)10-s + (0.151 − 0.151i)11-s + (−0.637 + 0.770i)13-s + (−0.934 − 0.539i)14-s − 0.250·16-s + (−0.786 − 1.36i)17-s + (−0.0581 − 0.0155i)19-s + (−0.0391 − 0.146i)20-s + 0.151·22-s + (−0.179 − 0.310i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(−0.949+0.315i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(−0.949+0.315i)Λ(1−s)
Degree: |
2 |
Conductor: |
702
= 2⋅33⋅13
|
Sign: |
−0.949+0.315i
|
Analytic conductor: |
5.60549 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ702(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 702, ( :1/2), −0.949+0.315i)
|
Particular Values
L(1) |
≈ |
0.0716758−0.443481i |
L(21) |
≈ |
0.0716758−0.443481i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 3 | 1 |
| 13 | 1+(2.29−2.77i)T |
good | 5 | 1+(0.653−0.175i)T+(4.33−2.5i)T2 |
| 7 | 1+(3.90−1.04i)T+(6.06−3.5i)T2 |
| 11 | 1+(−0.502+0.502i)T−11iT2 |
| 17 | 1+(3.24+5.61i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.253+0.0679i)T+(16.4+9.5i)T2 |
| 23 | 1+(0.860+1.49i)T+(−11.5+19.9i)T2 |
| 29 | 1+1.28iT−29T2 |
| 31 | 1+(−1.04−3.89i)T+(−26.8+15.5i)T2 |
| 37 | 1+(7.96−2.13i)T+(32.0−18.5i)T2 |
| 41 | 1+(2.39−8.94i)T+(−35.5−20.5i)T2 |
| 43 | 1+(5.67+3.27i)T+(21.5+37.2i)T2 |
| 47 | 1+(−9.07−2.43i)T+(40.7+23.5i)T2 |
| 53 | 1−6.34iT−53T2 |
| 59 | 1+(−3.52+3.52i)T−59iT2 |
| 61 | 1+(1.64−2.85i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−10.0−2.70i)T+(58.0+33.5i)T2 |
| 71 | 1+(−2.09+7.82i)T+(−61.4−35.5i)T2 |
| 73 | 1+(1.40+1.40i)T+73iT2 |
| 79 | 1+(−7.29−12.6i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.04−3.90i)T+(−71.8−41.5i)T2 |
| 89 | 1+(−2.64−9.85i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−0.520−1.94i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.06981799055288198368250113273, −9.769735452453013455138216114103, −9.282597885666945050344971699306, −8.295582498845712410244352904994, −6.96412470098666158788830334339, −6.75167240978972888074488785217, −5.59920681469658752994361731358, −4.55888185989330658746537609765, −3.46948813339658232397200899562, −2.50314576324753801814143923249,
0.18331535643574576747243577127, 2.17324723788749272587626963167, 3.47706439820134354859951694677, 4.07362657029656264677000338667, 5.42190270048500667342224396990, 6.34700166799804790716485517585, 7.14364343884630910501944905512, 8.306596455324476678014167549676, 9.356121850847556945546022897042, 10.18926817635784965221583357042