L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.653 + 0.175i)5-s + (−3.90 + 1.04i)7-s + (−0.707 + 0.707i)8-s + (−0.585 − 0.338i)10-s + (0.502 − 0.502i)11-s + (−2.29 + 2.77i)13-s + (−3.49 − 2.01i)14-s − 1.00·16-s + (−3.24 − 5.61i)17-s + (−0.253 − 0.0679i)19-s + (−0.175 − 0.653i)20-s + 0.710·22-s + (−0.860 − 1.49i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.292 + 0.0782i)5-s + (−1.47 + 0.394i)7-s + (−0.250 + 0.250i)8-s + (−0.185 − 0.106i)10-s + (0.151 − 0.151i)11-s + (−0.637 + 0.770i)13-s + (−0.934 − 0.539i)14-s − 0.250·16-s + (−0.786 − 1.36i)17-s + (−0.0581 − 0.0155i)19-s + (−0.0391 − 0.146i)20-s + 0.151·22-s + (−0.179 − 0.310i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.949 + 0.315i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.949 + 0.315i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0716758 - 0.443481i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0716758 - 0.443481i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.29 - 2.77i)T \) |
good | 5 | \( 1 + (0.653 - 0.175i)T + (4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (3.90 - 1.04i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (-0.502 + 0.502i)T - 11iT^{2} \) |
| 17 | \( 1 + (3.24 + 5.61i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.253 + 0.0679i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (0.860 + 1.49i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 1.28iT - 29T^{2} \) |
| 31 | \( 1 + (-1.04 - 3.89i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (7.96 - 2.13i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (2.39 - 8.94i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (5.67 + 3.27i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-9.07 - 2.43i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 6.34iT - 53T^{2} \) |
| 59 | \( 1 + (-3.52 + 3.52i)T - 59iT^{2} \) |
| 61 | \( 1 + (1.64 - 2.85i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.0 - 2.70i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-2.09 + 7.82i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (1.40 + 1.40i)T + 73iT^{2} \) |
| 79 | \( 1 + (-7.29 - 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.04 - 3.90i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-2.64 - 9.85i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.520 - 1.94i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06981799055288198368250113273, −9.769735452453013455138216114103, −9.282597885666945050344971699306, −8.295582498845712410244352904994, −6.96412470098666158788830334339, −6.75167240978972888074488785217, −5.59920681469658752994361731358, −4.55888185989330658746537609765, −3.46948813339658232397200899562, −2.50314576324753801814143923249,
0.18331535643574576747243577127, 2.17324723788749272587626963167, 3.47706439820134354859951694677, 4.07362657029656264677000338667, 5.42190270048500667342224396990, 6.34700166799804790716485517585, 7.14364343884630910501944905512, 8.306596455324476678014167549676, 9.356121850847556945546022897042, 10.18926817635784965221583357042