L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−1.35 − 0.361i)5-s + (0.977 + 0.261i)7-s + (0.707 + 0.707i)8-s + (1.21 − 0.699i)10-s + (−4.11 − 4.11i)11-s + (3.22 + 1.61i)13-s + (−0.876 + 0.505i)14-s − 1.00·16-s + (−1.67 + 2.89i)17-s + (−7.07 + 1.89i)19-s + (−0.361 + 1.35i)20-s + 5.81·22-s + (−0.290 + 0.502i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.603 − 0.161i)5-s + (0.369 + 0.0989i)7-s + (0.250 + 0.250i)8-s + (0.382 − 0.221i)10-s + (−1.23 − 1.23i)11-s + (0.894 + 0.446i)13-s + (−0.234 + 0.135i)14-s − 0.250·16-s + (−0.405 + 0.702i)17-s + (−1.62 + 0.434i)19-s + (−0.0809 + 0.301i)20-s + 1.23·22-s + (−0.0605 + 0.104i)23-s + ⋯ |
Λ(s)=(=(702s/2ΓC(s)L(s)(−0.760+0.649i)Λ(2−s)
Λ(s)=(=(702s/2ΓC(s+1/2)L(s)(−0.760+0.649i)Λ(1−s)
Degree: |
2 |
Conductor: |
702
= 2⋅33⋅13
|
Sign: |
−0.760+0.649i
|
Analytic conductor: |
5.60549 |
Root analytic conductor: |
2.36759 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ702(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 702, ( :1/2), −0.760+0.649i)
|
Particular Values
L(1) |
≈ |
0.0586624−0.158916i |
L(21) |
≈ |
0.0586624−0.158916i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 13 | 1+(−3.22−1.61i)T |
good | 5 | 1+(1.35+0.361i)T+(4.33+2.5i)T2 |
| 7 | 1+(−0.977−0.261i)T+(6.06+3.5i)T2 |
| 11 | 1+(4.11+4.11i)T+11iT2 |
| 17 | 1+(1.67−2.89i)T+(−8.5−14.7i)T2 |
| 19 | 1+(7.07−1.89i)T+(16.4−9.5i)T2 |
| 23 | 1+(0.290−0.502i)T+(−11.5−19.9i)T2 |
| 29 | 1−1.03iT−29T2 |
| 31 | 1+(−2.28+8.52i)T+(−26.8−15.5i)T2 |
| 37 | 1+(7.82+2.09i)T+(32.0+18.5i)T2 |
| 41 | 1+(−0.423−1.58i)T+(−35.5+20.5i)T2 |
| 43 | 1+(7.25−4.19i)T+(21.5−37.2i)T2 |
| 47 | 1+(−1.45+0.388i)T+(40.7−23.5i)T2 |
| 53 | 1−2.77iT−53T2 |
| 59 | 1+(8.47+8.47i)T+59iT2 |
| 61 | 1+(1.41+2.44i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−1.09+0.293i)T+(58.0−33.5i)T2 |
| 71 | 1+(2.71+10.1i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−0.788+0.788i)T−73iT2 |
| 79 | 1+(0.827−1.43i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−4.21−15.7i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−0.783+2.92i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−3.18+11.8i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19953803739303201928875225786, −8.911227181115109832140725616140, −8.210302481758641788693051073930, −7.934141734301669158008013744009, −6.46169061293610271800679995921, −5.87158543716321264539943007075, −4.65740978246793990361391535271, −3.59713040623507165239471185989, −1.96268524714759776524458377385, −0.099267946391601268014855845269,
1.86458940744360179304135161802, 3.03404073686163148555278710306, 4.27664881366779780372709009436, 5.12356519351037258448936098399, 6.65690133120096862664653200765, 7.47189840401343502719368624132, 8.271899416912659131246575785049, 8.954648020580573897424118479614, 10.27688699098232459096634801898, 10.56804203614466154853420807522