L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−1.35 − 0.361i)5-s + (0.977 + 0.261i)7-s + (0.707 + 0.707i)8-s + (1.21 − 0.699i)10-s + (−4.11 − 4.11i)11-s + (3.22 + 1.61i)13-s + (−0.876 + 0.505i)14-s − 1.00·16-s + (−1.67 + 2.89i)17-s + (−7.07 + 1.89i)19-s + (−0.361 + 1.35i)20-s + 5.81·22-s + (−0.290 + 0.502i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.603 − 0.161i)5-s + (0.369 + 0.0989i)7-s + (0.250 + 0.250i)8-s + (0.382 − 0.221i)10-s + (−1.23 − 1.23i)11-s + (0.894 + 0.446i)13-s + (−0.234 + 0.135i)14-s − 0.250·16-s + (−0.405 + 0.702i)17-s + (−1.62 + 0.434i)19-s + (−0.0809 + 0.301i)20-s + 1.23·22-s + (−0.0605 + 0.104i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.760 + 0.649i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.760 + 0.649i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0586624 - 0.158916i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0586624 - 0.158916i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.22 - 1.61i)T \) |
good | 5 | \( 1 + (1.35 + 0.361i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.977 - 0.261i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (4.11 + 4.11i)T + 11iT^{2} \) |
| 17 | \( 1 + (1.67 - 2.89i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (7.07 - 1.89i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (0.290 - 0.502i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 1.03iT - 29T^{2} \) |
| 31 | \( 1 + (-2.28 + 8.52i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (7.82 + 2.09i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-0.423 - 1.58i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (7.25 - 4.19i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.45 + 0.388i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 - 2.77iT - 53T^{2} \) |
| 59 | \( 1 + (8.47 + 8.47i)T + 59iT^{2} \) |
| 61 | \( 1 + (1.41 + 2.44i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.09 + 0.293i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (2.71 + 10.1i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-0.788 + 0.788i)T - 73iT^{2} \) |
| 79 | \( 1 + (0.827 - 1.43i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.21 - 15.7i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-0.783 + 2.92i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-3.18 + 11.8i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19953803739303201928875225786, −8.911227181115109832140725616140, −8.210302481758641788693051073930, −7.934141734301669158008013744009, −6.46169061293610271800679995921, −5.87158543716321264539943007075, −4.65740978246793990361391535271, −3.59713040623507165239471185989, −1.96268524714759776524458377385, −0.099267946391601268014855845269,
1.86458940744360179304135161802, 3.03404073686163148555278710306, 4.27664881366779780372709009436, 5.12356519351037258448936098399, 6.65690133120096862664653200765, 7.47189840401343502719368624132, 8.271899416912659131246575785049, 8.954648020580573897424118479614, 10.27688699098232459096634801898, 10.56804203614466154853420807522