L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−0.136 − 0.136i)5-s + (3.40 + 3.40i)7-s + (0.707 − 0.707i)8-s + 0.193i·10-s + (−2.95 + 2.95i)11-s + (−3.31 + 1.41i)13-s − 4.82i·14-s − 1.00·16-s + 1.26·17-s + (−2.82 + 2.82i)19-s + (0.136 − 0.136i)20-s + 4.17·22-s − 7.83·23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (−0.0610 − 0.0610i)5-s + (1.28 + 1.28i)7-s + (0.250 − 0.250i)8-s + 0.0610i·10-s + (−0.889 + 0.889i)11-s + (−0.919 + 0.393i)13-s − 1.28i·14-s − 0.250·16-s + 0.306·17-s + (−0.647 + 0.647i)19-s + (0.0305 − 0.0305i)20-s + 0.889·22-s − 1.63·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0865 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0865 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.651129 + 0.596995i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.651129 + 0.596995i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.31 - 1.41i)T \) |
good | 5 | \( 1 + (0.136 + 0.136i)T + 5iT^{2} \) |
| 7 | \( 1 + (-3.40 - 3.40i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.95 - 2.95i)T - 11iT^{2} \) |
| 17 | \( 1 - 1.26T + 17T^{2} \) |
| 19 | \( 1 + (2.82 - 2.82i)T - 19iT^{2} \) |
| 23 | \( 1 + 7.83T + 23T^{2} \) |
| 29 | \( 1 + 2.30iT - 29T^{2} \) |
| 31 | \( 1 + (3.60 - 3.60i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3.54 - 3.54i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.65 - 1.65i)T + 41iT^{2} \) |
| 43 | \( 1 - 4.36iT - 43T^{2} \) |
| 47 | \( 1 + (-5.75 + 5.75i)T - 47iT^{2} \) |
| 53 | \( 1 - 8.16iT - 53T^{2} \) |
| 59 | \( 1 + (7.77 - 7.77i)T - 59iT^{2} \) |
| 61 | \( 1 - 6.62T + 61T^{2} \) |
| 67 | \( 1 + (-8.52 + 8.52i)T - 67iT^{2} \) |
| 71 | \( 1 + (-4.58 - 4.58i)T + 71iT^{2} \) |
| 73 | \( 1 + (6.49 + 6.49i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.03T + 79T^{2} \) |
| 83 | \( 1 + (-12.1 - 12.1i)T + 83iT^{2} \) |
| 89 | \( 1 + (-12.0 + 12.0i)T - 89iT^{2} \) |
| 97 | \( 1 + (-5.85 + 5.85i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52510477207762428315992276112, −9.879262074246001905570303997842, −8.929421927709814133355046595178, −8.035914691902197255614400770802, −7.64863074415134189975423659414, −6.13961389551224442335088784435, −5.06891972856050424018566583818, −4.28251315618433470121400037813, −2.47597111379831889494074263759, −1.92703695089540771794477318040,
0.52344554303230457875350026857, 2.13581646189583132753234772835, 3.82624069443215798158961700060, 4.92178225083234635972753996545, 5.70514417392555110506857507186, 7.03324318100897431423267842319, 7.79725302271796327732887014378, 8.141045659726203014427251333295, 9.355250798267242316984577781445, 10.38904349383196503473205229001