Properties

Label 4-704e2-1.1-c3e2-0-1
Degree 44
Conductor 495616495616
Sign 11
Analytic cond. 1725.351725.35
Root an. cond. 6.444946.44494
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 11·5-s + 10·7-s + 31·9-s − 22·11-s + 22·13-s + 99·15-s − 160·17-s − 12·19-s − 90·21-s − 119·23-s − 135·25-s − 72·27-s + 138·29-s + 401·31-s + 198·33-s − 110·35-s − 341·37-s − 198·39-s − 318·41-s − 450·43-s − 341·45-s − 312·47-s + 262·49-s + 1.44e3·51-s + 400·53-s + 242·55-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.983·5-s + 0.539·7-s + 1.14·9-s − 0.603·11-s + 0.469·13-s + 1.70·15-s − 2.28·17-s − 0.144·19-s − 0.935·21-s − 1.07·23-s − 1.07·25-s − 0.513·27-s + 0.883·29-s + 2.32·31-s + 1.04·33-s − 0.531·35-s − 1.51·37-s − 0.812·39-s − 1.21·41-s − 1.59·43-s − 1.12·45-s − 0.968·47-s + 0.763·49-s + 3.95·51-s + 1.03·53-s + 0.593·55-s + ⋯

Functional equation

Λ(s)=(495616s/2ΓC(s)2L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
Λ(s)=(495616s/2ΓC(s+3/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 495616 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 495616495616    =    2121122^{12} \cdot 11^{2}
Sign: 11
Analytic conductor: 1725.351725.35
Root analytic conductor: 6.444946.44494
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 495616, ( :3/2,3/2), 1)(4,\ 495616,\ (\ :3/2, 3/2),\ 1)

Particular Values

L(2)L(2) \approx 0.25411488450.2541148845
L(12)L(\frac12) \approx 0.25411488450.2541148845
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
11C1C_1 (1+pT)2 ( 1 + p T )^{2}
good3D4D_{4} 1+p2T+50T2+p5T3+p6T4 1 + p^{2} T + 50 T^{2} + p^{5} T^{3} + p^{6} T^{4}
5D4D_{4} 1+11T+256T2+11p3T3+p6T4 1 + 11 T + 256 T^{2} + 11 p^{3} T^{3} + p^{6} T^{4}
7D4D_{4} 110T162T210p3T3+p6T4 1 - 10 T - 162 T^{2} - 10 p^{3} T^{3} + p^{6} T^{4}
13D4D_{4} 122T+4418T222p3T3+p6T4 1 - 22 T + 4418 T^{2} - 22 p^{3} T^{3} + p^{6} T^{4}
17D4D_{4} 1+160T+15838T2+160p3T3+p6T4 1 + 160 T + 15838 T^{2} + 160 p^{3} T^{3} + p^{6} T^{4}
19D4D_{4} 1+12T+4054T2+12p3T3+p6T4 1 + 12 T + 4054 T^{2} + 12 p^{3} T^{3} + p^{6} T^{4}
23D4D_{4} 1+119T+15046T2+119p3T3+p6T4 1 + 119 T + 15046 T^{2} + 119 p^{3} T^{3} + p^{6} T^{4}
29D4D_{4} 1138T+10762T2138p3T3+p6T4 1 - 138 T + 10762 T^{2} - 138 p^{3} T^{3} + p^{6} T^{4}
31D4D_{4} 1401T+3218pT2401p3T3+p6T4 1 - 401 T + 3218 p T^{2} - 401 p^{3} T^{3} + p^{6} T^{4}
37D4D_{4} 1+341T+117548T2+341p3T3+p6T4 1 + 341 T + 117548 T^{2} + 341 p^{3} T^{3} + p^{6} T^{4}
41D4D_{4} 1+318T+155266T2+318p3T3+p6T4 1 + 318 T + 155266 T^{2} + 318 p^{3} T^{3} + p^{6} T^{4}
43D4D_{4} 1+450T+193246T2+450p3T3+p6T4 1 + 450 T + 193246 T^{2} + 450 p^{3} T^{3} + p^{6} T^{4}
47D4D_{4} 1+312T+106270T2+312p3T3+p6T4 1 + 312 T + 106270 T^{2} + 312 p^{3} T^{3} + p^{6} T^{4}
53D4D_{4} 1400T+328054T2400p3T3+p6T4 1 - 400 T + 328054 T^{2} - 400 p^{3} T^{3} + p^{6} T^{4}
59D4D_{4} 121T+347794T221p3T3+p6T4 1 - 21 T + 347794 T^{2} - 21 p^{3} T^{3} + p^{6} T^{4}
61D4D_{4} 1462T+472306T2462p3T3+p6T4 1 - 462 T + 472306 T^{2} - 462 p^{3} T^{3} + p^{6} T^{4}
67D4D_{4} 1+327T+409402T2+327p3T3+p6T4 1 + 327 T + 409402 T^{2} + 327 p^{3} T^{3} + p^{6} T^{4}
71D4D_{4} 1603T+691270T2603p3T3+p6T4 1 - 603 T + 691270 T^{2} - 603 p^{3} T^{3} + p^{6} T^{4}
73D4D_{4} 1206T+707066T2206p3T3+p6T4 1 - 206 T + 707066 T^{2} - 206 p^{3} T^{3} + p^{6} T^{4}
79D4D_{4} 12026T+24930pT22026p3T3+p6T4 1 - 2026 T + 24930 p T^{2} - 2026 p^{3} T^{3} + p^{6} T^{4}
83D4D_{4} 11046T+1254046T21046p3T3+p6T4 1 - 1046 T + 1254046 T^{2} - 1046 p^{3} T^{3} + p^{6} T^{4}
89D4D_{4} 1721T+762904T2721p3T3+p6T4 1 - 721 T + 762904 T^{2} - 721 p^{3} T^{3} + p^{6} T^{4}
97D4D_{4} 11467T+1221460T21467p3T3+p6T4 1 - 1467 T + 1221460 T^{2} - 1467 p^{3} T^{3} + p^{6} T^{4}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.25907285550092953214854402125, −10.22730808082024014244958457863, −9.523083924193291182507405211865, −8.807076308983124408709192293006, −8.275516254427061889374133321448, −8.268567880024335607627378190779, −7.73197003166756984054350665472, −6.95383192345174890871612117178, −6.62371151629684787980963845131, −6.32521675740804843532822447192, −5.85956314653286453804554871535, −5.18561787447844079539127970680, −4.74754900249714846117798175014, −4.62247640071073470477920964514, −3.78517884854051473337808983163, −3.47078727697101480104172861093, −2.24317286356945382920248413843, −1.99385820270714535535342965907, −0.799935378615591115760775914803, −0.21875644368045118874388342994, 0.21875644368045118874388342994, 0.799935378615591115760775914803, 1.99385820270714535535342965907, 2.24317286356945382920248413843, 3.47078727697101480104172861093, 3.78517884854051473337808983163, 4.62247640071073470477920964514, 4.74754900249714846117798175014, 5.18561787447844079539127970680, 5.85956314653286453804554871535, 6.32521675740804843532822447192, 6.62371151629684787980963845131, 6.95383192345174890871612117178, 7.73197003166756984054350665472, 8.268567880024335607627378190779, 8.275516254427061889374133321448, 8.807076308983124408709192293006, 9.523083924193291182507405211865, 10.22730808082024014244958457863, 10.25907285550092953214854402125

Graph of the ZZ-function along the critical line