L(s) = 1 | − 9·3-s − 11·5-s + 10·7-s + 31·9-s − 22·11-s + 22·13-s + 99·15-s − 160·17-s − 12·19-s − 90·21-s − 119·23-s − 135·25-s − 72·27-s + 138·29-s + 401·31-s + 198·33-s − 110·35-s − 341·37-s − 198·39-s − 318·41-s − 450·43-s − 341·45-s − 312·47-s + 262·49-s + 1.44e3·51-s + 400·53-s + 242·55-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.983·5-s + 0.539·7-s + 1.14·9-s − 0.603·11-s + 0.469·13-s + 1.70·15-s − 2.28·17-s − 0.144·19-s − 0.935·21-s − 1.07·23-s − 1.07·25-s − 0.513·27-s + 0.883·29-s + 2.32·31-s + 1.04·33-s − 0.531·35-s − 1.51·37-s − 0.812·39-s − 1.21·41-s − 1.59·43-s − 1.12·45-s − 0.968·47-s + 0.763·49-s + 3.95·51-s + 1.03·53-s + 0.593·55-s + ⋯ |
Λ(s)=(=(495616s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(495616s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
495616
= 212⋅112
|
Sign: |
1
|
Analytic conductor: |
1725.35 |
Root analytic conductor: |
6.44494 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 495616, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.2541148845 |
L(21) |
≈ |
0.2541148845 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C1 | (1+pT)2 |
good | 3 | D4 | 1+p2T+50T2+p5T3+p6T4 |
| 5 | D4 | 1+11T+256T2+11p3T3+p6T4 |
| 7 | D4 | 1−10T−162T2−10p3T3+p6T4 |
| 13 | D4 | 1−22T+4418T2−22p3T3+p6T4 |
| 17 | D4 | 1+160T+15838T2+160p3T3+p6T4 |
| 19 | D4 | 1+12T+4054T2+12p3T3+p6T4 |
| 23 | D4 | 1+119T+15046T2+119p3T3+p6T4 |
| 29 | D4 | 1−138T+10762T2−138p3T3+p6T4 |
| 31 | D4 | 1−401T+3218pT2−401p3T3+p6T4 |
| 37 | D4 | 1+341T+117548T2+341p3T3+p6T4 |
| 41 | D4 | 1+318T+155266T2+318p3T3+p6T4 |
| 43 | D4 | 1+450T+193246T2+450p3T3+p6T4 |
| 47 | D4 | 1+312T+106270T2+312p3T3+p6T4 |
| 53 | D4 | 1−400T+328054T2−400p3T3+p6T4 |
| 59 | D4 | 1−21T+347794T2−21p3T3+p6T4 |
| 61 | D4 | 1−462T+472306T2−462p3T3+p6T4 |
| 67 | D4 | 1+327T+409402T2+327p3T3+p6T4 |
| 71 | D4 | 1−603T+691270T2−603p3T3+p6T4 |
| 73 | D4 | 1−206T+707066T2−206p3T3+p6T4 |
| 79 | D4 | 1−2026T+24930pT2−2026p3T3+p6T4 |
| 83 | D4 | 1−1046T+1254046T2−1046p3T3+p6T4 |
| 89 | D4 | 1−721T+762904T2−721p3T3+p6T4 |
| 97 | D4 | 1−1467T+1221460T2−1467p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25907285550092953214854402125, −10.22730808082024014244958457863, −9.523083924193291182507405211865, −8.807076308983124408709192293006, −8.275516254427061889374133321448, −8.268567880024335607627378190779, −7.73197003166756984054350665472, −6.95383192345174890871612117178, −6.62371151629684787980963845131, −6.32521675740804843532822447192, −5.85956314653286453804554871535, −5.18561787447844079539127970680, −4.74754900249714846117798175014, −4.62247640071073470477920964514, −3.78517884854051473337808983163, −3.47078727697101480104172861093, −2.24317286356945382920248413843, −1.99385820270714535535342965907, −0.799935378615591115760775914803, −0.21875644368045118874388342994,
0.21875644368045118874388342994, 0.799935378615591115760775914803, 1.99385820270714535535342965907, 2.24317286356945382920248413843, 3.47078727697101480104172861093, 3.78517884854051473337808983163, 4.62247640071073470477920964514, 4.74754900249714846117798175014, 5.18561787447844079539127970680, 5.85956314653286453804554871535, 6.32521675740804843532822447192, 6.62371151629684787980963845131, 6.95383192345174890871612117178, 7.73197003166756984054350665472, 8.268567880024335607627378190779, 8.275516254427061889374133321448, 8.807076308983124408709192293006, 9.523083924193291182507405211865, 10.22730808082024014244958457863, 10.25907285550092953214854402125