L(s) = 1 | − 2.43i·3-s − 17.0·5-s + 13.3·7-s + 21.0·9-s + (−30.7 − 19.6i)11-s + 66.3i·13-s + 41.4i·15-s − 10.3i·17-s + 86.7·19-s − 32.3i·21-s − 134. i·23-s + 165.·25-s − 116. i·27-s + 69.9i·29-s + 79.2i·31-s + ⋯ |
L(s) = 1 | − 0.468i·3-s − 1.52·5-s + 0.718·7-s + 0.780·9-s + (−0.842 − 0.538i)11-s + 1.41i·13-s + 0.713i·15-s − 0.148i·17-s + 1.04·19-s − 0.336i·21-s − 1.21i·23-s + 1.32·25-s − 0.833i·27-s + 0.448i·29-s + 0.459i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.538 + 0.842i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.538 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.006082709\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.006082709\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (30.7 + 19.6i)T \) |
good | 3 | \( 1 + 2.43iT - 27T^{2} \) |
| 5 | \( 1 + 17.0T + 125T^{2} \) |
| 7 | \( 1 - 13.3T + 343T^{2} \) |
| 13 | \( 1 - 66.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 10.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 86.7T + 6.85e3T^{2} \) |
| 23 | \( 1 + 134. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 69.9iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 79.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 111.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 261. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 128.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 422. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 727.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 573. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 889. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 137. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 35.6iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 845. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 603.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.07e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 532.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 371.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.717639417181411391363859965762, −8.626863272474772399918590576790, −7.87002044327001079960305264699, −7.34309426290519193317285981916, −6.44674888058049460212518209127, −4.89880766437497964726141673538, −4.30565168918242874325845871323, −3.12479026712083040679502168705, −1.64022358522591915610003024480, −0.32807949138591731956054618186,
1.14162841514900329253475179444, 2.94316567923285852854678772988, 3.92969193959154399555273965794, 4.75799317601799152319875785118, 5.57078002129068740959936027582, 7.34317354405751054389567657131, 7.65318573186951574195336598490, 8.342646876769460105003922940961, 9.669572792312280793778260733617, 10.33387051771875004385989646718