Properties

Label 2-84e2-12.11-c1-0-59
Degree $2$
Conductor $7056$
Sign $-0.418 + 0.908i$
Analytic cond. $56.3424$
Root an. cond. $7.50616$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.19i·5-s − 1.57·11-s + 0.670·13-s + 5.91i·17-s + 3.28i·19-s + 3.95·23-s − 5.18·25-s − 0.585i·29-s − 9.54i·31-s + 7.69·37-s − 3.77i·41-s − 12.3i·43-s − 7.34·47-s + 13.3i·53-s + 5.02i·55-s + ⋯
L(s)  = 1  − 1.42i·5-s − 0.474·11-s + 0.185·13-s + 1.43i·17-s + 0.754i·19-s + 0.824·23-s − 1.03·25-s − 0.108i·29-s − 1.71i·31-s + 1.26·37-s − 0.589i·41-s − 1.88i·43-s − 1.07·47-s + 1.83i·53-s + 0.677i·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7056\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-0.418 + 0.908i$
Analytic conductor: \(56.3424\)
Root analytic conductor: \(7.50616\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7056} (4607, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7056,\ (\ :1/2),\ -0.418 + 0.908i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.541225678\)
\(L(\frac12)\) \(\approx\) \(1.541225678\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 3.19iT - 5T^{2} \)
11 \( 1 + 1.57T + 11T^{2} \)
13 \( 1 - 0.670T + 13T^{2} \)
17 \( 1 - 5.91iT - 17T^{2} \)
19 \( 1 - 3.28iT - 19T^{2} \)
23 \( 1 - 3.95T + 23T^{2} \)
29 \( 1 + 0.585iT - 29T^{2} \)
31 \( 1 + 9.54iT - 31T^{2} \)
37 \( 1 - 7.69T + 37T^{2} \)
41 \( 1 + 3.77iT - 41T^{2} \)
43 \( 1 + 12.3iT - 43T^{2} \)
47 \( 1 + 7.34T + 47T^{2} \)
53 \( 1 - 13.3iT - 53T^{2} \)
59 \( 1 + 4.96T + 59T^{2} \)
61 \( 1 - 6.51T + 61T^{2} \)
67 \( 1 + 5.51iT - 67T^{2} \)
71 \( 1 - 6.85T + 71T^{2} \)
73 \( 1 - 5.84T + 73T^{2} \)
79 \( 1 + 6.08iT - 79T^{2} \)
83 \( 1 + 9.48T + 83T^{2} \)
89 \( 1 + 14.8iT - 89T^{2} \)
97 \( 1 + 0.183T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.947066175399771679568623573175, −7.14618004941424701656082067507, −5.94000308004644991318613808881, −5.79057564256886055571737382551, −4.79545794937039645485467207976, −4.22372390535163963370909402864, −3.47961888210408122581356041342, −2.24468906808290068677783301947, −1.43185060418697309001650200817, −0.42415251724052350337304705359, 1.03597202484057456039076938345, 2.46082083703079318611540975559, 2.90583824248661985723622863901, 3.55648842100689838068123837739, 4.80700786580095348439690588153, 5.17652895719362160157591428894, 6.40775383098575705580645651744, 6.69485984682554250425018808698, 7.36741646178820913408976177093, 8.000154655658086150827316150808

Graph of the $Z$-function along the critical line