L(s) = 1 | − 3.19i·5-s − 1.57·11-s + 0.670·13-s + 5.91i·17-s + 3.28i·19-s + 3.95·23-s − 5.18·25-s − 0.585i·29-s − 9.54i·31-s + 7.69·37-s − 3.77i·41-s − 12.3i·43-s − 7.34·47-s + 13.3i·53-s + 5.02i·55-s + ⋯ |
L(s) = 1 | − 1.42i·5-s − 0.474·11-s + 0.185·13-s + 1.43i·17-s + 0.754i·19-s + 0.824·23-s − 1.03·25-s − 0.108i·29-s − 1.71i·31-s + 1.26·37-s − 0.589i·41-s − 1.88i·43-s − 1.07·47-s + 1.83i·53-s + 0.677i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.541225678\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.541225678\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 3.19iT - 5T^{2} \) |
| 11 | \( 1 + 1.57T + 11T^{2} \) |
| 13 | \( 1 - 0.670T + 13T^{2} \) |
| 17 | \( 1 - 5.91iT - 17T^{2} \) |
| 19 | \( 1 - 3.28iT - 19T^{2} \) |
| 23 | \( 1 - 3.95T + 23T^{2} \) |
| 29 | \( 1 + 0.585iT - 29T^{2} \) |
| 31 | \( 1 + 9.54iT - 31T^{2} \) |
| 37 | \( 1 - 7.69T + 37T^{2} \) |
| 41 | \( 1 + 3.77iT - 41T^{2} \) |
| 43 | \( 1 + 12.3iT - 43T^{2} \) |
| 47 | \( 1 + 7.34T + 47T^{2} \) |
| 53 | \( 1 - 13.3iT - 53T^{2} \) |
| 59 | \( 1 + 4.96T + 59T^{2} \) |
| 61 | \( 1 - 6.51T + 61T^{2} \) |
| 67 | \( 1 + 5.51iT - 67T^{2} \) |
| 71 | \( 1 - 6.85T + 71T^{2} \) |
| 73 | \( 1 - 5.84T + 73T^{2} \) |
| 79 | \( 1 + 6.08iT - 79T^{2} \) |
| 83 | \( 1 + 9.48T + 83T^{2} \) |
| 89 | \( 1 + 14.8iT - 89T^{2} \) |
| 97 | \( 1 + 0.183T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.947066175399771679568623573175, −7.14618004941424701656082067507, −5.94000308004644991318613808881, −5.79057564256886055571737382551, −4.79545794937039645485467207976, −4.22372390535163963370909402864, −3.47961888210408122581356041342, −2.24468906808290068677783301947, −1.43185060418697309001650200817, −0.42415251724052350337304705359,
1.03597202484057456039076938345, 2.46082083703079318611540975559, 2.90583824248661985723622863901, 3.55648842100689838068123837739, 4.80700786580095348439690588153, 5.17652895719362160157591428894, 6.40775383098575705580645651744, 6.69485984682554250425018808698, 7.36741646178820913408976177093, 8.000154655658086150827316150808