L(s) = 1 | + (−259. + 1.42e3i)2-s + (−1.96e6 − 7.38e5i)4-s + 3.78e7·5-s − 1.95e8i·7-s + (1.56e9 − 2.60e9i)8-s + (−9.80e9 + 5.39e10i)10-s − 4.29e10i·11-s − 7.25e10i·13-s + (2.79e11 + 5.07e10i)14-s + (3.30e12 + 2.89e12i)16-s + 8.33e12i·17-s − 2.11e13·19-s + (−7.42e13 − 2.79e13i)20-s + (6.11e13 + 1.11e13i)22-s − 4.93e13·23-s + ⋯ |
L(s) = 1 | + (−0.178 + 0.983i)2-s + (−0.935 − 0.352i)4-s + 1.73·5-s − 0.262i·7-s + (0.513 − 0.857i)8-s + (−0.310 + 1.70i)10-s − 0.499i·11-s − 0.146i·13-s + (0.257 + 0.0469i)14-s + (0.752 + 0.659i)16-s + 1.00i·17-s − 0.791·19-s + (−1.62 − 0.610i)20-s + (0.491 + 0.0893i)22-s − 0.248·23-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.997+0.0756i)Λ(22−s)
Λ(s)=(=(72s/2ΓC(s+21/2)L(s)(−0.997+0.0756i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.997+0.0756i
|
Analytic conductor: |
201.223 |
Root analytic conductor: |
14.1853 |
Motivic weight: |
21 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :21/2), −0.997+0.0756i)
|
Particular Values
L(11) |
≈ |
1.050377926 |
L(21) |
≈ |
1.050377926 |
L(223) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(259.−1.42e3i)T |
| 3 | 1 |
good | 5 | 1−3.78e7T+4.76e14T2 |
| 7 | 1+1.95e8iT−5.58e17T2 |
| 11 | 1+4.29e10iT−7.40e21T2 |
| 13 | 1+7.25e10iT−2.47e23T2 |
| 17 | 1−8.33e12iT−6.90e25T2 |
| 19 | 1+2.11e13T+7.14e26T2 |
| 23 | 1+4.93e13T+3.94e28T2 |
| 29 | 1+2.69e15T+5.13e30T2 |
| 31 | 1+1.12e15iT−2.08e31T2 |
| 37 | 1+3.66e16iT−8.55e32T2 |
| 41 | 1−8.22e16iT−7.38e33T2 |
| 43 | 1+2.81e17T+2.00e34T2 |
| 47 | 1+3.37e17T+1.30e35T2 |
| 53 | 1+7.67e17T+1.62e36T2 |
| 59 | 1−5.94e18iT−1.54e37T2 |
| 61 | 1+3.41e18iT−3.10e37T2 |
| 67 | 1−5.71e18T+2.22e38T2 |
| 71 | 1−1.23e19T+7.52e38T2 |
| 73 | 1−3.13e19T+1.34e39T2 |
| 79 | 1−8.71e19iT−7.08e39T2 |
| 83 | 1−4.57e19iT−1.99e40T2 |
| 89 | 1−1.01e20iT−8.65e40T2 |
| 97 | 1+2.74e20T+5.27e41T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79386865707242086687372931502, −9.957988408670668285961762446365, −9.087693486443220872367194782778, −8.076832736723055233124204920329, −6.65176657242186565973255061219, −5.97750305503886328223437456822, −5.14974312334589740493649927669, −3.76655951021318039371822114114, −2.11306951148855019675883572343, −1.15879014836107748813257903029,
0.18584549468493889062778281012, 1.60616074123287240734793551429, 2.09522406066112366907319938593, 3.15421892753426421429963051359, 4.70062423353263422455480051454, 5.55160955664793689844009387737, 6.82555011727563209590431752158, 8.465225188696183390155628272793, 9.498639631292489273413529008672, 9.977783875533085545463570909010