L(s) = 1 | + (1.04e3 − 998. i)2-s + (1.03e5 − 2.09e6i)4-s − 2.17e7·5-s + 8.90e8i·7-s + (−1.98e9 − 2.30e9i)8-s + (−2.28e10 + 2.17e10i)10-s − 3.82e10i·11-s − 4.83e11i·13-s + (8.89e11 + 9.34e11i)14-s + (−4.37e12 − 4.35e11i)16-s − 2.21e12i·17-s + 1.16e13·19-s + (−2.26e12 + 4.56e13i)20-s + (−3.81e13 − 4.01e13i)22-s − 8.76e13·23-s + ⋯ |
L(s) = 1 | + (0.724 − 0.689i)2-s + (0.0495 − 0.998i)4-s − 0.997·5-s + 1.19i·7-s + (−0.652 − 0.757i)8-s + (−0.722 + 0.687i)10-s − 0.444i·11-s − 0.973i·13-s + (0.821 + 0.863i)14-s + (−0.995 − 0.0989i)16-s − 0.266i·17-s + 0.437·19-s + (−0.0494 + 0.996i)20-s + (−0.306 − 0.322i)22-s − 0.441·23-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.995−0.0954i)Λ(22−s)
Λ(s)=(=(72s/2ΓC(s+21/2)L(s)(0.995−0.0954i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.995−0.0954i
|
Analytic conductor: |
201.223 |
Root analytic conductor: |
14.1853 |
Motivic weight: |
21 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :21/2), 0.995−0.0954i)
|
Particular Values
L(11) |
≈ |
1.330465682 |
L(21) |
≈ |
1.330465682 |
L(223) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.04e3+998.i)T |
| 3 | 1 |
good | 5 | 1+2.17e7T+4.76e14T2 |
| 7 | 1−8.90e8iT−5.58e17T2 |
| 11 | 1+3.82e10iT−7.40e21T2 |
| 13 | 1+4.83e11iT−2.47e23T2 |
| 17 | 1+2.21e12iT−6.90e25T2 |
| 19 | 1−1.16e13T+7.14e26T2 |
| 23 | 1+8.76e13T+3.94e28T2 |
| 29 | 1+4.27e15T+5.13e30T2 |
| 31 | 1+2.49e15iT−2.08e31T2 |
| 37 | 1−5.91e15iT−8.55e32T2 |
| 41 | 1+2.79e16iT−7.38e33T2 |
| 43 | 1+5.17e16T+2.00e34T2 |
| 47 | 1+2.93e17T+1.30e35T2 |
| 53 | 1−7.56e17T+1.62e36T2 |
| 59 | 1−4.55e18iT−1.54e37T2 |
| 61 | 1−6.83e18iT−3.10e37T2 |
| 67 | 1−2.07e18T+2.22e38T2 |
| 71 | 1−1.22e19T+7.52e38T2 |
| 73 | 1−6.26e19T+1.34e39T2 |
| 79 | 1+7.16e19iT−7.08e39T2 |
| 83 | 1−1.85e20iT−1.99e40T2 |
| 89 | 1+2.85e20iT−8.65e40T2 |
| 97 | 1−9.52e20T+5.27e41T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.12847164425121549593053779701, −9.818126523608143507876308586044, −8.692985269398946989126882735249, −7.51736197938798267386626090992, −5.94802382978234315637921591657, −5.24838090673849137030633628542, −3.91475075389051198134250728333, −3.08701296626966249735618284704, −2.06371054265800907205295670309, −0.66986538925932524199823402048,
0.26286436115617450914016361115, 1.86746930431321451097965177986, 3.57238576856829714330004653529, 4.02344260871801965066344322327, 5.05273416823503663327598926736, 6.56064677481700722020687050934, 7.36801206459552562096338630649, 8.072089025533670839070687856370, 9.487724272043478625422285316795, 11.02595348193477954181880455018