L(s) = 1 | + (−2.34 + 1.58i)2-s + (2.99 − 7.41i)4-s + 6.32i·5-s + 10·7-s + (4.69 + 22.1i)8-s + (−10.0 − 14.8i)10-s + 37.9i·11-s + 59.3i·13-s + (−23.4 + 15.8i)14-s + (−46.0 − 44.4i)16-s − 75.0·17-s + 118. i·19-s + (46.9 + 18.9i)20-s + (−60.0 − 88.9i)22-s + 150.·23-s + ⋯ |
L(s) = 1 | + (−0.829 + 0.559i)2-s + (0.374 − 0.927i)4-s + 0.565i·5-s + 0.539·7-s + (0.207 + 0.978i)8-s + (−0.316 − 0.469i)10-s + 1.04i·11-s + 1.26i·13-s + (−0.447 + 0.301i)14-s + (−0.718 − 0.695i)16-s − 1.07·17-s + 1.43i·19-s + (0.524 + 0.212i)20-s + (−0.581 − 0.862i)22-s + 1.36·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.207 - 0.978i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.207 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.592975 + 0.731787i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.592975 + 0.731787i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.34 - 1.58i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 6.32iT - 125T^{2} \) |
| 7 | \( 1 - 10T + 343T^{2} \) |
| 11 | \( 1 - 37.9iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 59.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 75.0T + 4.91e3T^{2} \) |
| 19 | \( 1 - 118. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 150.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 246. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 62T + 2.97e4T^{2} \) |
| 37 | \( 1 - 59.3iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 375.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 118. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 450.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 132. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 733. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 533. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 711. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 - 30T + 3.89e5T^{2} \) |
| 79 | \( 1 - 94T + 4.93e5T^{2} \) |
| 83 | \( 1 + 670. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 750.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 130T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.75626615954404905656443483582, −13.72706490407965680655699960224, −11.93895753174482768947125277454, −10.91081478722974632289438432422, −9.829792816275799073305332603816, −8.683527573471398514215268319860, −7.36016460731941364759068163279, −6.43642249899004322837223289722, −4.66818566401842876303810128580, −1.95698788669787030287002228668,
0.843581455303045577154825550162, 2.98964440745171456406232368856, 4.98240964575716959785315717052, 6.96759718286122523807758828622, 8.437182450692687677778447787886, 9.006553114226092258440059070768, 10.68271395759717941866855520390, 11.26810327354987394760084865014, 12.69159344472675627151117507668, 13.43166472160846117522934532718