L(s) = 1 | + (1.64 + 3.64i)2-s + (−10.5 + 11.9i)4-s − 21.8·5-s + 2.75·7-s + (−61.1 − 18.9i)8-s + (−35.9 − 79.6i)10-s − 173.·11-s − 121. i·13-s + (4.52 + 10.0i)14-s + (−31.5 − 254. i)16-s + 347. i·17-s + 88.8i·19-s + (231. − 261. i)20-s + (−285. − 633. i)22-s + 230. i·23-s + ⋯ |
L(s) = 1 | + (0.411 + 0.911i)2-s + (−0.662 + 0.749i)4-s − 0.873·5-s + 0.0561·7-s + (−0.955 − 0.295i)8-s + (−0.359 − 0.796i)10-s − 1.43·11-s − 0.721i·13-s + (0.0230 + 0.0511i)14-s + (−0.123 − 0.992i)16-s + 1.20i·17-s + 0.246i·19-s + (0.578 − 0.654i)20-s + (−0.590 − 1.30i)22-s + 0.436i·23-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.792+0.609i)Λ(5−s)
Λ(s)=(=(72s/2ΓC(s+2)L(s)(−0.792+0.609i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.792+0.609i
|
Analytic conductor: |
7.44263 |
Root analytic conductor: |
2.72811 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :2), −0.792+0.609i)
|
Particular Values
L(25) |
≈ |
0.152714−0.449295i |
L(21) |
≈ |
0.152714−0.449295i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.64−3.64i)T |
| 3 | 1 |
good | 5 | 1+21.8T+625T2 |
| 7 | 1−2.75T+2.40e3T2 |
| 11 | 1+173.T+1.46e4T2 |
| 13 | 1+121.iT−2.85e4T2 |
| 17 | 1−347.iT−8.35e4T2 |
| 19 | 1−88.8iT−1.30e5T2 |
| 23 | 1−230.iT−2.79e5T2 |
| 29 | 1+1.31e3T+7.07e5T2 |
| 31 | 1−1.67e3T+9.23e5T2 |
| 37 | 1−1.40e3iT−1.87e6T2 |
| 41 | 1−2.07e3iT−2.82e6T2 |
| 43 | 1−3.31e3iT−3.41e6T2 |
| 47 | 1+1.47e3iT−4.87e6T2 |
| 53 | 1−579.T+7.89e6T2 |
| 59 | 1−2.27e3T+1.21e7T2 |
| 61 | 1+5.79e3iT−1.38e7T2 |
| 67 | 1+2.80e3iT−2.01e7T2 |
| 71 | 1+7.67e3iT−2.54e7T2 |
| 73 | 1+8.36e3T+2.83e7T2 |
| 79 | 1−1.01e3T+3.89e7T2 |
| 83 | 1−305.T+4.74e7T2 |
| 89 | 1+1.94e3iT−6.27e7T2 |
| 97 | 1+7.67e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.93808131508743217273316911123, −13.39287906153429823430058486527, −12.71223711878559131121383554035, −11.42572349647126765241404324483, −9.977817001450070681593776674069, −8.153955789168717193349541100234, −7.80101673864122612253586573253, −6.11496841790381336208261214033, −4.78758776286810002850183004184, −3.30984354869934721500138517098,
0.20992042405445104794256612375, 2.54358396823476600768049226270, 4.12912012051496936497816895712, 5.39624670068343400606659951126, 7.35639891449711747626393444414, 8.764738546917228436149106294740, 10.09132411076119579420488709710, 11.21511274949741262109865217617, 11.99255497678330135316046588315, 13.13286207517023139438004258628