L(s) = 1 | + (−3.30 − 2.25i)2-s + (4.44 − 7.82i)3-s + (5.79 + 14.9i)4-s + (−2.53 + 1.46i)5-s + (−32.3 + 15.7i)6-s + (−39.8 − 23.0i)7-s + (14.5 − 62.3i)8-s + (−41.4 − 69.6i)9-s + (11.6 + 0.896i)10-s + (27.1 − 46.9i)11-s + (142. + 21.0i)12-s + (−174. + 100. i)13-s + (79.5 + 165. i)14-s + (0.170 + 26.3i)15-s + (−188. + 172. i)16-s − 88.7·17-s + ⋯ |
L(s) = 1 | + (−0.825 − 0.564i)2-s + (0.494 − 0.869i)3-s + (0.362 + 0.932i)4-s + (−0.101 + 0.0586i)5-s + (−0.898 + 0.438i)6-s + (−0.813 − 0.469i)7-s + (0.227 − 0.973i)8-s + (−0.511 − 0.859i)9-s + (0.116 + 0.00896i)10-s + (0.224 − 0.388i)11-s + (0.989 + 0.146i)12-s + (−1.03 + 0.596i)13-s + (0.405 + 0.846i)14-s + (0.000758 + 0.117i)15-s + (−0.737 + 0.675i)16-s − 0.306·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.924−0.381i)Λ(5−s)
Λ(s)=(=(72s/2ΓC(s+2)L(s)(−0.924−0.381i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.924−0.381i
|
Analytic conductor: |
7.44263 |
Root analytic conductor: |
2.72811 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :2), −0.924−0.381i)
|
Particular Values
L(25) |
≈ |
0.0993094+0.501181i |
L(21) |
≈ |
0.0993094+0.501181i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(3.30+2.25i)T |
| 3 | 1+(−4.44+7.82i)T |
good | 5 | 1+(2.53−1.46i)T+(312.5−541.i)T2 |
| 7 | 1+(39.8+23.0i)T+(1.20e3+2.07e3i)T2 |
| 11 | 1+(−27.1+46.9i)T+(−7.32e3−1.26e4i)T2 |
| 13 | 1+(174.−100.i)T+(1.42e4−2.47e4i)T2 |
| 17 | 1+88.7T+8.35e4T2 |
| 19 | 1+357.T+1.30e5T2 |
| 23 | 1+(−214.+123.i)T+(1.39e5−2.42e5i)T2 |
| 29 | 1+(−18.7−10.8i)T+(3.53e5+6.12e5i)T2 |
| 31 | 1+(−349.+201.i)T+(4.61e5−7.99e5i)T2 |
| 37 | 1+1.26e3iT−1.87e6T2 |
| 41 | 1+(1.10e3+1.91e3i)T+(−1.41e6+2.44e6i)T2 |
| 43 | 1+(−678.+1.17e3i)T+(−1.70e6−2.96e6i)T2 |
| 47 | 1+(−3.12e3−1.80e3i)T+(2.43e6+4.22e6i)T2 |
| 53 | 1+4.12e3iT−7.89e6T2 |
| 59 | 1+(2.64e3+4.57e3i)T+(−6.05e6+1.04e7i)T2 |
| 61 | 1+(4.77e3+2.75e3i)T+(6.92e6+1.19e7i)T2 |
| 67 | 1+(−3.09e3−5.35e3i)T+(−1.00e7+1.74e7i)T2 |
| 71 | 1−4.83e3iT−2.54e7T2 |
| 73 | 1−9.43e3T+2.83e7T2 |
| 79 | 1+(1.09e3+635.i)T+(1.94e7+3.37e7i)T2 |
| 83 | 1+(−1.26e3+2.19e3i)T+(−2.37e7−4.11e7i)T2 |
| 89 | 1−5.90e3T+6.27e7T2 |
| 97 | 1+(928.−1.60e3i)T+(−4.42e7−7.66e7i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.01215667344183263855701562930, −12.23639244594403175389952368194, −11.04219114573874288984487732330, −9.672480853132975978593222245174, −8.750120570067924368392547167638, −7.42716575323922001532028298193, −6.58386411533717648002855747467, −3.69899731378170031217993165832, −2.20506361839364110087169081950, −0.30638900935447191618245710313,
2.60814172326957933144916997843, 4.72888810703110056546126304870, 6.24047642893998451122004939190, 7.76188750566123064653898798411, 8.931476883852904094940446201140, 9.784757360391124011688343230188, 10.64514868895051938198853061529, 12.19927788146875389881877766601, 13.75688351483183153508264478301, 15.12389910097979033451229385984